

D.3.3 ALGORITHMS FOR INCREMENTAL
REQUIREMENTS MODELS EVALUATION AND
TRANSFORMATION

Michela Angeli (UNITN), Gábor Bergmann (BME), Fabio Massacci
(UNITN),Bashar Nuseibeh (OU),Federica Paci (UNITN), Bjornar
Solhaug (SINTEF), Thein Than Tun (OU), Yijun Yu (OU), Dániel
Varró (BME)

Document information

Document Number D.3.3

Document Title
Algorithms for Incremental Requirements Models
Evaluation and Transformation

Version 1.19

Status Final

Work Package WP 3

Deliverable Type Report

Contractual Date of Delivery 31 January 2012

Actual Date of Delivery 31 January 2012

Responsible Unit UNITN

Contributors OU, UNITN, BME, THA

Keyword List

Dissemination level PU

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 2/136

Document change record

Version Date Status Author (Unit) Description

1.0
30 November
2011

Draft
Federica Paci
(UNITN)

Outline of the
deliverable

1.1
8 December
2011

Draft
Federica Paci
(UNITN)

Introduction

1.2
11 December
2011

Draft
Ábel Hegedüs
(BME)

Introduction

1.3
16 December
2011

Draft
Ábel Hegedüs
(BME)

Section 4

1.4
17 December
2011

Draft Thein Tun(OU) Section 2

1.5
19 December
2011

Draft
Federica Paci
(UNITN)

Introduction, Section
3 and draft of
Executive Summary

1.6
19 December
2011

Draft
Ábel Hegedüs
(BME)

Introduction

1.7
23 December
2011

Draft
Thein Tun
(OU)

Revised Section 2

1.8
23 December
2011

Draft
Le Ming Sang
(UNITN)

Added Section 4

1.9
23 December
2011

Draft
Federica Paci
(UNITN)

Final version of the
deliverable

1.10
28 December
2011

Draft
Michela Angeli
(UNITN)

First quality check
completed-minor
remarks

1.11 14 January 2012 Final
Federica Paci
(UNITN)

Reviwers’ Comments
Addressed

1.12 15 January 2012 Final
Ábel Hegedüs
(BME)

Reviewers’
commentsaddressed

1.13 16 January Final Thein Tun Addressed

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 3/136

(OU) reviewers’ comments

1.14 19 January Final
Federica Paci
(UNITN)

Minor Changes

1.15 23 January Final
Ábel Hegedüs
(BME)

Addressed
reviewers’ comments

1.16 24 January Final
Thein Tun
(OU)

Addressed
reviewers’ comments

1.17 26 January Final
Federica Paci
(UNITN)

Addressed
reviewers’ comments

1.18 26 January Final
Michela Angeli
(UNITN)

Second quality check
completed-minor
remarks

1.19 31 January Final
Federica Paci
(UNITN)

Final version
revision

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 4/136

Executive summary

Deliverable 3.4 presents the results of tasks T3.2 Incremental Model Transformation
and T3.3 Incremental V&V Change Analysis during the third year of SecureChange
project. The main focus of the activities conducted in Work Package 3 is the
integrability into industry practice of the results obtained in Year 2. The main results of
Year 2 are:

a) argumentation analysis to reason on the satisfaction of security requirements
under evolution,

b) a quantitative reasoning which helps the designer to select a system design
that is resilient to changing requirements, and

c) a semi-automatic approach to requirements change management based on
incremental graph patterns and change driven transformations.

This deliverable shows how these results have been revised in order to allow the
integration into existing industrial security engineering processes. The deliverable not
only shows that the results of Work Package 3 can be adopted in industry but also that
when they are adopted, they improve over the change management processes
adopted in industry.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 5/136

Index

DOCUMENT INFORMATION 1

DOCUMENT CHANGE RECORD 2

EXECUTIVE SUMMARY 4

INDEX 5

1 INTRODUCTION 7

2 ORCHESTRATING SECURITY AND SYSTEM ENGINEERING
PROCESSES 8

3 ORCHESTRATING REQUIREMENTS AND RISK ASSESSMENT
PROCESSES 11

3.1 Orchestrating SI* and CORAS concepts and processes 11

3.2 Orchestrating SI* and Security DSML concepts and processes 14

3.3 Orchestrating Argumentation and Risk Assessment Processes 16

3.3.1 Overview of the approach 16

3.3.2 Application to the ATM case study 18

4 ORCHESTRATING REQUIREMENTS AND TESTING PROCESSES 20

5 A FRAMEWORK FOR MODELING AND REASONING ON GOAL
MODELS EVOLUTION 23

5.1 Reasoning on goal models evolution 23

6 AUTOMATIC GENERATION OF CHANGE REACTIONS 28

6.1 Inductive mechanisms to automatic change reactions generation 28

6.2 Application to the ATM case study 30

7 CONCLUSIONS 32

REFERENCES 33

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 6/136

APPENDIX A 34

APPENDIX B 42

APPENDIX C 58

APPENDIX D 69

APPENDIX E 85

APPENDIX F 112

APPENDIX G 121

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 7/136

1 Introduction

This deliverable presents the results of Work package 3 activities during the third year
of SecureChange project.

According to the plan set forth in the DoW the activities of Work package 3 were
focused on the integratability of the concepts and results from Y2 into the main Secure
Change Process and into industry practice.

The main results of Year 2 reported in D3.2 and D3.3 were

• a qualitative and a quantitative reasoning technique for evolving requirements
models, and

• a semi-automatic approach to requirements change management that is based
on incremental graph patterns and change driven transformations.

The qualitative reasoning technique is based on argumentation analysis that is one of
the steps of the SecMER methodology. Argumentation analysis is used to reason on
security requirements satisfaction under change. Instead, the quantitative reasoning
helps the designer to select a system design that is resilient to changing requirements.
The reasoning is based on the modeling of the evolution as a set of rules and on the
computation of two metrics called maximal belief and residual risk. Change-driven
transformation based on security patterns allow to check argument validity, to
automatically detect violations or fulfilment of security properties, and to issue alerts
prompting human intervention, or potentially triggers automated reactions in certain
cases.

In order to show how these results can be integrated into existing industrial security
engineering processes, we have focused on the integration of the analysis of Security
Requirements with the following steps of Risk Assessment and Security Testing from
the perspective of existing processes.

In Section 1 we present a typical industrial security engineering process that is based
on the orchestration of risk assessment and system engineering processes. In Section
2 we show that requirements evolution modelling and argumentation analysis can be
orchestrated with risk assessment activities which are part of industrial security
engineering processes. In Section 3 we show that requirement evolution modelling can
also be orchestrated with another crucial activity in industrial security engineering
processes, that is security testing.

The usefulness of both the quantitative reasoning and of change driven transformation
to the change management process adopted by Air Navigation Providers has been
validated during the workshops conducted with ATM experts at DeepBlue premises.
The validation activity is described in appendix E of this deliverable. In Section 4 and 5
we illustrate how the quantitative reasoning technique on requirements evolution and
change-driven transformation based on security patterns have been revised to address
the need to have automatic decision support tools for change management in the air
traffic management domain.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 8/136

2 Orchestrating Security and System
Engineering processes

This section presents an industrial security engineering process where the risk
engineering process which has been standardized independently can be orchestrated
into the overall system engineering process. The need of an orchestrated process is
pointed in international standards like ISO/IEC 15288:2008 and ISO/IEC 12207:2008
[16, 17]. These standards describe the system and software life cycle of the
engineering process and including clauses mentioning that non-functional properties
such as security should be considered in different phases.

In security specialty engineering, risk analysis methodologies such as EBIOS, CORAS
or CRAMM give the rationale for security requirements and assess the risks in an
exhaustive way, as needed in domains such as administration or military systems. The
risk management process does not cover the entire security engineering activities but
is a key starting point to them.

Thus a first issue is to show how the risk management process and security
requirement analysis can collaborate with the global system engineering process
described in those engineering standards. The difficulty resides in the necessary
iterations needed to refine the security requirements since some vulnerabilities and
risks will appear only once the system architectural design has been set up.

In particular we investigate how the processes Stakeholder Requirements Definition
(Clause 6.4.1), Requirements Analysis (Clause 6.4.2), and Architectural Design

Figura 1. ISO/IEC 12207 vs EBIOS process

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 9/136

(Clause 6.4.3) processes of ISO/IEC 12207 can be orchestrated with EBIOS risk
methodology activities (see Figure 1).

Figure 2.ISO/IEC 12207 sub-set of processes and EBIOS collaboration diagram

The resulting orchestrated process is represented in Figure 2.The stakeholder
relationship1 technical manager gets the needs and requirements from the
stakeholders (Clause 6.4.1). He pushes the information related to security needs to the
security risk manager who expresses the unwanted damages and defines the first
security objectives. The stakeholder relationship technical manager validates the
security objectives with the stakeholders and consolidates them before sending them
to the requirement manager. Then the requirement manager consolidates them with
requirements from other stakeholders and sends all the requirements to the system
designer.

The system designer analyzes the requirements (Clause 6.4.2) and defines the
functions of the system. Once this is done, the security risk manager updates the
essential elements (Activity 1) based on the functions of the system, updates the
damages (Activity 2), adds some security objectives (Activity 8), defines first security
requirements (Activity 9) and sends them to the system designer and to the
requirement manager. The system designer validates the requirements analysis with
the design authority who propagates it.

The system designer proceeds to architectural design of the system, allocating
functions to elements of the system (Clause 6.4.3). This new organization of the model
of the system is analyzed by the security risk manager who evaluates carefully the
risks and defines security solutions (Activities 3 to 10), and sends the updates of the

1 The stakeholder relationship manager in the majority of requirement engineering framework is called requirement
manager

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 10/136

security solutions to the system designer who consolidates the system design and
validates the architectural design with the design authority who propagates it.
Architectural design and updated requirements are propagated to the system
engineering manager and the security engineering manager for them to complete the
design at physical layer and implement it (Clause 6.4.3 and Clause 6.4.4).Once he has
chosen the security solutions, the security engineering manager sends the information
to the security risk manager for targets and vulnerabilities determination (Activities 3
and 4) and a full update of the risk management cycle (Activities 5 to 10).

The updates are passed through the security engineering manager to the system
engineering manager. The system engineering manager validates the architectural
design and the existing elements of the implementation with the design authority.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 11/136

3 Orchestrating Requirements and Risk
Assessment processes

Changing requirements might give rise to potential security risks that in turn require
some treatments to ensure and maintain an acceptable security risk level. Or treatment
options that result from risk assessment may lead to new security requirements that
should be included in the requirement model. Moreover, the requirement changes may
involve new assets the risk level of which needs to be assessed. Thus, there is the
need to trace changes to security knowledge such as assets, attacks and treatments to
stakeholders' goals and security requirements and vice versa.

Current industrial software/system engineering processes are supported by artifacts
(documents, models, data bases) that are disjoint and cannot be fully integrated for a
variety of reasons (separate engineering domains, outsourcing, confidentiality, etc.).
Thus, the collaboration between risk analyst and requirement analyst in such
processes is sometimes difficult, especially when a change occurs and they have to
interact to keep the risk and the requirement models mutually consistent under change.

The papers in Appendix A and B propose a possible solution to change propagation
that is based on the orchestration of the requirement engineering and risk assessment
processes. The orchestration relies upon mappings between key concepts of the
requirement and the risk conceptual models.

In section 3.1, weinstantiate the requirement and risk conceptual models, to SI* and
CORAS respectively. However, alternative approaches to requirement engineering and
risk analysis with similar underlying conceptual frameworks can be orchestrated by
following the same approach. Indeed, the concepts that are mapped in the former --
such as goal, resource, and task -- are in common to other goal-oriented approaches
to requirement engineering. The same holds for asset and treatments that are key
concepts in other risk analysis approaches. In section 3.2 we show that the same
approach can be applied to SI* and Security DSML [19], which is a language and a tool
developed to conduct security risk analysis in industry.

In section 3.3 we also illustrate how argumentation analysis can be orchestrated with
risk assessment.

3.1 Orchestrating SI* and CORAS concepts and
processes

We have mapped concepts in SI* and CORAS that are used to represent assets that
are critical for the achievement of organization's strategic objectives, and means to
protect assets in a cost-effective manner. We have identified three conceptual
mappings: ServiceToAsset, ServiceToTreatment and TreatmentToTask.

• ServiceToAsset. A service that is linked to a soft goal by a “protects” relation
which denotes a resource, a task or a goal that is of value for the organization
and thus needs to be protected from harm. Since in CORAS, an asset is

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 12/136

something of value that requires protection, we map a service protected by a
soft goal in SI* to an asset in CORAS.

• ServiceToTreatment. A service which is related to another service mapped to
an asset in a CORAS model, can be mapped to a treatment if the service
reduces the likelihood or the consequence of a threat scenario damaging the
asset.

• TreatmentToTask. A treatment is a security control that should reduce the
likelihood or consequence of a threat to an asset which results in a loss of
confidentiality, availability, or integrity. Thus, if a treatment is implemented, the
confidentiality, integrity or availability of an asset is protected. A treatment in
CORAS can therefore be mapped to a task which fulfills the soft goal which
specifies the security property that has to be preserved for an asset.

These are several examples of possible change propagation scenarios that are
supported by these conceptual mappings. In what follows we illustrate some of these
scenarios based on the introduction of a new surveillance tool, the Automatic
Dependent Surveillance-Broadcasting (ADS-B) into ATM systems. ADS-B provides
accurate aircraft position information by using a global navigation satellite system.

Figure 3. SI* and CORAS models before change

However, ADS-B makes ATM systems vulnerable to new threats. For example, ADS-B
transmissions can be easily corrupted: a concrete example is the spoofing of the GPS
satellite that provides the GPS signal to determine aircraft position.

Let’s first illustrate a change propagation scenario that is based on the
ServiceToAsset and TreatmentToTask conceptual mappings. The SI* and CORAS
models before change are illustrated in Figure 3. The change we consider first is the
introduction of a new actor, the ADS-B, which is intended to increase the accuracy and
availability of the surveillance data. Figure 4 illustrates the SI* and CORAS models
after the introduction of the ADS-B: the changes that are handled are highlighted in

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 13/136

grey. The ADS-B introduction requires the addition of the goal Manage ADS-B signal
and the resource ADS-B signal. Moreover, since the integrity of the ADS-B signal is
critical, introducing a new soft goal Integrity of ADS-B signal specifies this security
need. Notice also that because ADS-B signal becomes part of the surveillance data,
the soft goal Availability of surveillance data is decomposed into the sub goals
Availability of ADS-B signal and Availability of Radar signal. The introduction of
the ADS-B actor may affect the risks due to the introduction of the new soft goals. In
particular, the soft goal Integrity of ADS-B signal is mapped to a corresponding
asset in the CORAS model for which a risk assessment is conducted. As ADS-B is
prone to data spoofing, this issue is addressed and identified as an unacceptable risk
with respect to integrity. The treatment Apply MD5 checksum is considered, and
leads to the addition of a new task Apply MD5 Checksum fulfilling the soft goal
Integrity of ADS-B signal in the SI* model. The new soft goal Availability of ADS-B
signal is also mapped to the CORAS model as a new aspect of the more general
asset Availability of surveillance data. The risk analyst decides not to decompose
this asset with respect to ADS-B and radar when assessing the impact of the ADS-B. A
new threat scenario Loss of ADS-B signal is identified, but the overall risks with
respect to availability of surveillance data do not increase; rather, the likelihood of the
threat scenario Failure of A/C tracking decreases from likely to possible (see Figure
3 (b)).

Component
failure

Radar

RDPS crashes
[possible]

Loss of radar signal
in MRT

Failure of A/C
tracking

[possible]

Failure in
provisioning of
surveillance
data
[possible] Availability of

surveillance
data

Run fault tolerant
MRT

Unreliable
RDPS

Insufficient
radar

maintenance

minor

RDPS

Radar Manage
radar signal

Gather aircraft
position

Manage
surveillance

data

Surveillance
data

AND

ADS-B

Loss of ADS-B
signal

ADS-B
unreliable Manage

ADS-B signal

ADS-B

Manage
ADS-B signal

De

Attacker

Spoofing of
ADS-B signal

[rare]

Degradation
of A/C
position data
[unlikely] Integrity of

ADS-B signal
Lack of
integrity

mechanisms Apply MD5
checksum

major

Run fault
tolerant

MRT

Apply MD5
checksum

ADS-B
signal

Radar
signal

AND

Availability of
radar signal

Availability of
ADS-B signal

+ +

Availability of
surveillance

data

AND

Integrity of
ADS-B signal

+

ADS-B
signal

De

Figure 4. Post change SI* and CORAS models

Another possible scenario of change-driven interplay is based on the
ServiceToTreatment and TreatmentToTask conceptual mappings. The introduction
of a new actor, the ADS-B, increases the availability of surveillance data. Thus, the
likelihood of the threat scenario Failure of A/C tracking in the CORAS model is
reduced. Consequently, the risk analyst determines that the treatment Run fault
tolerant MRT is no longer needed and therefore removes it from the CORAS model.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 14/136

This treatment is mapped to the corresponding task in the requirement model since it
protects the soft goal Availability of radar data, and hence the more general soft
goal Availability of surveillance data. Therefore, the removal of treatment Run
fault tolerant MRT in the CORAS model leads to the removal of the mapped task
Run fault tolerant MRT. In Figure 4 the removal of elements is indicated by the
diagonally striped elements.

The change-driven interplay scenarios are supported by the formalization of the
mappings as VIATRA2 graph transformation rules. The formalization is reported in
Appendix B. The execution of the rules ensures that consistency is maintained
between the two models and that none of the models become obsolete with respect to
the other under change.

3.2 Orchestrating SI* and Security DSML concepts
and processes

Here we illustrate some of the steps of the orchestrated process based on the
conceptual mappings between SI* and Security DSML shown in Table 1. The steps of
the process are presented using the introduction of the AMAN as illustrative example.

 Conceptual Mapping

Requirement Risk Architecture Type

Business Object Essential
Element

 Shared

Goal Security
Objective

 Mapped

Security Goal Security
Requirement

 Mapped

Process
Security
Solution Mapped

Table 1. Concepual Mapping between SI* and Security DSML

The stakeholder relationship technical manager and the security risk manager interact
to identify an initial set of security objectives to be passed to the requirement manager.

The stakeholder relationship technical manager passes the requirements proposed by
the stakeholders and the initial security objectives to the requirement manager. A
change request is triggered for the requirement domain: the SI* model illustrated in
Figure 1 is produced by the requirement manager.

The system designer analyzes the SI* model provided by the requirement manager
and then passes it to the security risk manager.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 15/136

The security risk manager identifies the following new security objectives:

• O1 The system shall be computed automatically by an Arrival Manager
system that covers the risk;

• R1 Failure in the provisioning of correct or optimal arrival information due to
ATCO mistakes;

• O2 The update of the system should be handled through a dedicated role of
Sequence Manager that covers the risk R1.

The above security objectives are refined into the following security requirements:

• RE1 The system should integrate an AMAN (refines security objective O1)

• RE2 The organization should integrate a SQM (refines security objective O2).

Figure 5 represents the Security DSML model updated with the new security objectives
and security requirements.

The changes into the Security DSML model trigger a change request for the
requirement domain. The requirement manager receives the new security objectives
and requirements and updates the SI* model as shown in Figure 6: two new actors,
AMAN and the SQM have been added with their goals, process and resources.

The new processes Compute Arrival Sequence provided by AMAN and Monitor and
Modify provided by SQM identified by the requirement manager has to be propagated
to the system designer and to the security risk manager.

Figure 5. Security DSML Model after the introduction of AMAN

The security risk manager assesses the new processes proposed by the requirement
manager and defines new security solutions to match the processes (outlined in red in
Figure 5). Then, the security risk manager passes the identified security solutions to
the system designer for validation.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 16/136

Figure 6. SI* Model after the introduction of the AMAN and SQM

3.3 Orchestrating Argumentation and Risk
Assessment Processes

Argumentation analysis is one of the main steps of the SecMER methodology.
Arguments provide a way to structure the system artifacts involving the concepts in the
SecMER conceptual model. The requirements analysis uses the SecMER requirement
model to sketch informal arguments for the security goals of the system which will be
affected by the proposed change.

In this section we orchestrate argumentation with risk assessment. We introduce RISA
approach to risk-based argumentation for evolving security requirements proposed in
[5], and its application to the ATM case study. In the paper attached in Appendix A,
RISA is applied to another case study, the PIN Entry Device (PED) system. The
change scenario in the paper is the introduction of variant PED systems, and the main
security properties are confidentiality and integrity of PIN.

3.3.1 Overview of the approach

Haley et al. [6] have shown that argumentation provides an appropriate framework for
demonstrating that a given software system satisfies its security requirements. They
separate arguments into two kinds. An outer argument is a formal proof that the
software (S), within a world context (W), satisfies the security requirements (R): W, S |-
R. Statements about the software and the world context are called behavioural
premises, the correctness of which is critical for system security. In order to
demonstrate their correctness, these statements are challenged and counter-
challenged by means of inner arguments.

The diagram in Figure 7 summarises the main steps of the proposed approach, named
RISA (RIsk assessment in Security Argumentation), extending the framework of Haley
et al [6]. As indicated in the diagram, Steps 1 to 3 of the proposed approach are the
same as the first three steps of the framework of Haley et al. Steps in shaded boxes

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 17/136

are supported by the argumentation tool OpenArgue [7], developed in the
SecureChange project.

In Step 1 (Identify Functional Requirements), functional requirements of the system
and the system context are identified. These requirements may be derived from the
higher-level goals of the system. In Step 2 (Identify Security Goals), assets that need to
be protected, and security goals are identified. In Step 3 (Identify Security
Requirements), security requirements are derived from security goals, and are
expressed as constraints on the functional requirements identified in Step 1.

Figure 7. Overview of the RISA approach

Unlike the fourth step of the Haley et al. framework, only the outer arguments for
security requirements, excluding the inner arguments, are constructed in Step 4
(Construct Outer Arguments) of RISA. These outer arguments are formal, and they
make use of domain properties, correctness of which is examined by inner arguments.
Behavioral premises used in the outer arguments may contain risks, which are
identified as part of risk assessment in RISA.

In Step 5 (Identify Risks), behavioral premises in outer arguments are analyzed in
terms of potential risks that rebut the premises. For instance, in the PED example,
there could be a behavioral premise about the confidentiality of the PIN entered using
the PED keypad. Public security catalogues are then searched to find known security
weaknesses and attack patterns regarding the confidentiality of PIN entered by
consumers using a keypad.

In Step 6 (Classify Risks) the catalogue entries related to risks identified in the previous
step to (i) find appropriate security mechanisms for mitigating them and (ii) classify

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 18/136

these mechanisms, and indirectly the risks associated with them, according to whether
the system or the context should mitigate the risks.

In Step 7 (Mitigate Risks), only the risks with mitigations assigned to the system are
considered. It involves the consolidation of mitigations reoccurring in several risks. It
consists of (1) numbering mitigations, (2) assigning to each of them a list of risks it
rebuts, and (3) updating their description to comply with all these risks, if applicable.
Some of these mitigations, themselves, could introduce new risks and therefore should
be assessed in a new round of inner argumentation. In the last step (Prioritize Risks),
risks are prioritized on the basis of their severity as indicated by the public security
catalogs (arrow from catalogs to Step 8). These risks affect the priority of requirements
to be satisfied (arrow from Step 8 to Steps 1–4). When the residual risks are deemed
to be acceptable given the limitation of development resources, the system has
reached the level of good-enough security.

3.3.2 Application to the ATM case study

We now briefly illustrate the application of the RISA approach to the (Automatic
Dependent Surveillance-Broadcasting) ADS-B introduction scenario of the ATM case
study. The purpose of the discussion is to briefly highlight how the approach will be
applied to the evolutionary ATM scenario used in the report by presenting the main
input and output from the steps.

Step 1 (Identify Functional Requirements): We begin by developing the after change
requirement model. In the case of ADS-B introduction, the functional requirement (or
the goal) is to manage surveillance data. As shown in the diagram in Figure 8, the
“Manage Surveillance data” goal can be decomposed further into two subgoals in the
after model.

Step 2 (Identify Security Goals): One overall security/soft goal is to ensure the
availability of surveillance data. This is a system level goal that has to be decomposed
into a number of requirements for various parts of the system. The main assets after
the change are Surveillance data, ADS-B signal and Radar signal, as shown in Figure
8. Another security goal is the integrity of ADS-B signal, which is not discussed further
here.

Step 3 (Identify Security Requirements): Applying the security goal of “Availability to
surveillance data” to the functional requirements gives a new security requirement, that
is ensuring the “Availability of ADS-B surveillance data”.

Step 4 (Construct Outer Arguments): The main argument for the availability of ADS-B
surveillance data in the after change scenario will take of the following form:

P1, P2, P3 → P4

where P1 is “Planes are fitted with ADS-B devices”, P2 is “GPS signals are available”,
P3 is “Ground surveillance system is fitted with ADS-B receivers” and P4 is “ADS-B
surveillance data is available”. (See Appendix C for formalisation of arguments.)

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 19/136

Availability of
surveillance

data

r

RDPS

Radar Manage
radar signal

Gather aircraft
position

Manage
surveillance

data

Surveillance
data

AND

Manage
ADS-B signal

ADS-B

Manage
ADS-B signal

De

Run fault
tolerant

MRT

Apply MD5
checksum

ADS-B
signal

Radar
signal

AND

Availability of
radar signal

Availability of
ADS-B signal

+ +

Availability of
surveillance

data

AND

Integrity of
ADS-B signal

+

ADS-B
signal

De

Figure 8. Requirement model for ADS-B Introduction

Step 5 (Identify Risks): There are several risks associated with each of the
behavioural premises (P1, P2 and P3). For instance, GPS signal availability may be at
risk due to several forms of attack, such as ADS-B signal jamming and the ADS-B
system turn off. Here the method user can adopt an appropriate risk identification
technique such as the one proposed by CORAS.

Step 6 (Classify Risks): ADS-B signal jamming is a risk that may be transferred to the
context, whilst the ADS-B system turn off is a risk that may be transferred to the
system.

Step 7 (Mitigate Risks): The risk of ADS-B signal jamming may be mitigated by
ensuring that there is no 1090 MHz jamming near ground stations, for instance. The
risk of ADS-B system turn off may be mitigated by providing no in-flight turn off
functionality.

Step 8 (Prioritize Risks): Domain experts help prioritizing the risks: in this case, they
are both identified as critical risks. Again, CORAS or another appropriate risk
prioritization technique can be used to prioritize these risks.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 20/136

4 Orchestrating Requirements and Testing
Processes

In this section we give a quick overview of the orchestration of requirements
engineering process and testing process. The process can be understood as an
instantiation of the more general and project wide integration presented in deliverable
D2.2. The process illustrated in Figure 9 is exemplified in Appendix D based on the
change requirement “Specification Evolution” of the POPS case study.

The orchestration of the requirements engineering process and the test generation
process is based on the identification of a set of concepts that are shared or mappable
in the two domains: a shared concept is a concept that has the same semantics in both
domains while a mappable concept is a concept that is related to one in the other
domain. Table 2 illustrates the conceptual interface. When a concept is changed in a
model then a corresponding change request is issued to the other model.

Requirement concept Testing concept Kind of integration

Goal Test Model (State
Machine, OCL code)

Mapped concept

Action Test Model (State
Machine, OCL code)

Mapped concept

Achievement level Test result Mapped concept

Actor SUT Mapped concept

Requirement Requirement Shared concept

Table 2. Conceptual mapping

We identify one shared concepts that is Requirement. A Requirement in both domains
represents a statement by a stakeholder about what the system should do.

The concepts of Actor, Goal and Process, are mapped on the Test Model. In particular,
the concept of Actor is used to identify the system under test (SUT). The concepts of
Goal and Process are used by the testing engineer to build the different types of Test
Models. The goals and processes in the Requirement Model are identified by a unique
name that is used to annotate the State Machine of the Test Model and the OCL code
in order to achieve traceability between the Requirement Model and the Test Model.

Mapping of a test case's result and status to a requirement achievement level allows
the requirement engineer to quantify the requirement coverage after evolution. This
correspondence is reported in Table 3: if the status of a test case after evolution is
new, adapted or updated, and the test result is pass the requirement covered by the
test case is fulfilled while it is denied (i.e. we have evidence that has not been
achieved) if the test result is fail. A subtle case is present when a test case is part of

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 21/136

the stagnation suite (i.e. obsolete) and the test result is fail. Here the test covers
requirements that have been deleted from the model and thus the corresponding
behavior should no longer be present (for example a withdrawn authorization) so failing
the test shows that the unwanted behavior is no longer present.

Figure 9. Orchestrated process

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 22/136

Test
Classification

Test Status Test Result Achievement
Level

Evolution New,
Adapted,Updated

Pass Fulfill

Regression Unimpacted, Re-
Executable

Pass Fulfill

Evolution New,
Adapted,Updated

Fail Deny

Regression Unimpacted, Re-
Executable

Fail Deny

Stagnation Outdated, Failed Pass Deny

Stagnation Outdated, Failed Fail Deny

Table 3. Requirements coverage

We also consider completion indicators for the change propagation process which
indicates whether all changes in the requirement model have been propagated to the
test model. Table 4 summarizes the mapping between Goal and Process in the
requirement model and the Test Model element. In a nutshell we say that the change
propagation process has been completed if:

• for each new or modified model element in the ReM model a new test case and
an adapted are added to the evolution test suite,

• for each model element not impacted by evolution there is a re-executable test
case in the regression test suite,

• for each model element deleted from the model there is an obsolete test case in
the stagnation test suite.

Change in ReM
Model

Test Status Test Suite

New Goal or
Process

New Evolution

Modified Goal or
Process

Adapted Adapted

Model Element Not
Impacted

Re-Executed Re-Executable

Deleted Element Obsolete Obsolete

Table 4. Completion of change propagation

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 23/136

5 A framework for modeling and reasoning
on goal models evolution

In this section we present an enhanced version of the framework for modelling and
reasoning on evolution of requirements models which was proposed in the previous
version of this deliverable submitted at M24. The framework is based on the idea of
modelling evolution of requirement models in terms of two kinds of evolution rules:
controllable and observable rules. The reasoning is based on the computation of two
quantitative metrics called maximal belief and residual risk that intuitively measure the
usefulness of a design alternative (or a set of elements) after evolution. In fact, the
maximal belief tells whether a design alternative is useful after evolution, while residual
risk quantifies if a design alternative is no longer useful. The framework during the third
year of the project has been applied to goal models. In this section we will present an
optimal algorithm to compute maximal belief and residual risk metrics for goal models.

5.1 Reasoning on goal models evolution

To illustrate the calculation of Max Belief and Residual Risk, let‘s consider the
introduction of the AMAN as example. The critical mission of AMAN is to support
ATCOs to manage the arrival traffic safely and efficiently, e.g. by maintaining an
appropriate separation between aircrafts. The AMAN calculates an optimal arrival
sequence considering many constraints such as flight profiles, aircraft types, airspace
and runway condition, inbound flow rate, as well as meteorological conditions. The final
sequence is approved by ATCOs. Then, the AMAN generates various kinds of
advisories for ATCO to send to pilots e.g. time to lose or gain, top-of-descent, track
extension, while their execution is continuously monitored to react to possible
violations. The sequence and other relevant data are exchanged with adjacent sectors
to improve collaboration and reduce conflicts.

This high level goal of AMAN is refined to many other subgoals, as illustrated by the
hypergraph in Figure 10. The hypergraph consists of nodes (rounded rectangles) that
represent goals to be achieved and circles that represent the AND decomposition of
goals. Here the example only focuses on the sub goal ‘G2- optimal arrival sequence
applied’ and ‘G5- Data exchanged’. The former goal concerns the generation and
application of an optimal arrival sequence with respect to a given situation. The latter
goal is to exchange data for collaborating with other units.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 24/136

Figure 10. Goal model for AMAN’s top goal ‘Arrival traffic managed safely’.

The ATM working environment is continuously evolving due to numerous causes such
as the increase of traffic load, the new performance and safety standards, or the need
of tighter collaboration between ATM systems. These organizational level changes
introduce many potential evolutions on AMAN such as:

− AMAN should support what-if-probing and online simulation.

− AMAN should support trajectory prediction, i.e. Expected Time of Arrival

− AMAN should support advanced advisories generation: heading, speed
instructions.

− AMAN should be interoperable and optimized at European level, by supporting
SESAR 4D operations such as Controlled Time of Arrival (CTA) and Required
Time of Arrival (RTA) negotiation.

− AMAN should be able to exchange data with other queue management tool
such as the Departure Manager (DMAN), or other AMANs in same or other
airports.

− AMAN should integrate with other monitoring and conflict detection tools such
as Monitoring Aids (MONA), Medium Term Conflict Detection (MTCD).

These organizational level changes can be represented as a set of observational
evolution rules. The goal G5 –Data Exchanged in Figure 5 is refined into one subgoal
G9 –Data exchanged with adjacent sectors. One potential evolution for is that a
regulatory body requires that the organization should also achieve both goal G12 - Basic
data exchanged with DMAN and goal G13 -Advanced data exchanged with DMAN
albeit for different functionalities. If this possibility actually happens the organization
should meet {G9, G12, G13} in order to meet G5. However, the discussion in the
regulatory body is still quite open and another option might be to actually leave
partners to chose whether to impose G9 –Data exchanged with adjacent sectors and
G12 - Basic data exchanged with DMAN and leave operators the choice of
implementing G9 and G13 -Advanced data exchanged with DMAN. These possibilities
exclusively happen with some uncertainties. For example, there is 12% of probability
that goal G5- Data exchanged is refined to goal G9- Data exchanged with adjacent

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 25/136

sectors. And there is 42% of probability that goal G5 is refined to either goals {G9, G12},
or goals {G9, G13}. Finally, there is 46% of probability that goal G5 is refined to goals
{G9, G12, G13}.

{G9, G12}, {G9, G13 } and {G9, G12, G13} are called design alternatives for goal G5.

Figure 11. The goal model of Figure 5 with potential evolutions. Shaded goals denote potential

changes in future, and the diamond nodes denote different possibilities that a goal may change.

In order to compute the maximal belief and the residual risk, we transform the
hypergraph in Figure 10 into the hypegraph that includes goals and the possible
evolution rules illustrated in Figure 11. The hypergraph includes two evolution rules for
goal G2 - Optimal arrival sequence applied and goal G5 –Data Exchanged. Notice that,
goals with a same number refer to the same objective, and only one of them is fully
labeled to save the space. White goals indicate goals existing before evolution, while
gray goals denote goals introduced when evolution happens. As already described G5

might evolve to either {G9, G12, G13} and {G9, G12} or {G9, G13 } with a probability of
46% and 42%, respectively. The original part might stay unchanged with a probability
of 12%. Similarly, goal G2 also evolves to two other possibilities with probabilities of
45% and 40%. It stays the same with a probability of the 15%.

Each node in the hypergraph is associated with a data structure called design
alternative table (DAT). The DAT is a set of tuples ⟨S, mb, rr, Ti⟩ where S is a set of leaf
goals necessary to fulfill this node; mb, rr are the maximum belief and residual risk of
this node, respectively; Ti is a possible design alternative in the observable evolution
rule associated with the node. Obviously, two tuples in a DAT which have a same Ti are
two design alternatives of an observable evolution possibility. For a leaf node L, the
DAT of L has only one row which is ⟨{L}, 1, 0, ∅⟩. The DATs of leaf nodes are then
propagated upward to predecessor nodes (ancestors). This propagation is done by two
operators join (⊗) and concat (⊕). Also via these operators, DAT of a predecessor
node is generated using their successor's DATs. join (⊗) and concat (⊕) are defined
as follows.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 26/136

When propagated upward, depend on the kinds of predecessor nodes and the kinds of
connections among nodes, suitable operation (join or concat) will be applied. join is
used to generate the DAT of a compound node where the semantic is that all child
node are chosen. Meanwhile, concat is used to generate the DAT of a goal node or
observable node where the semantic is the selection of one among its successor.

(1)

Where . The operator ‘|’
denotes the string concatenation operator e.g. a | {b, c} = {ab, ac}. The Max Belief and
Residual Risk of a design alternative are calculated by following equation.

(2)

Where SDA(C) is a subset of the DAT of the root node such that C is able to support.
Notice that two or more tuples in a DAT which have a same T_i determine that they are
design alternatives fulfilling a same observable evolution possibility. Thus, when
calculating residual risk, only one of them is taken into account.

The comparison criterion between two design alternatives based on Max Belief and
Residual Risk is that the higher Max Belief and lower Residual Risk design alternative
is the better. If two design alternatives DA1 and DA2, which Max Belief of DA1 is greater
than DA2, but the Residual Risk of DA2, are less than that of DA1, then we can compare
DA1 and DA2 based on the combination of Max Belief and Residual Risk. A simple
combination of these values is the harmonic mean. Hence, if the harmonic mean of
Max Belief and Residual Risk of DA1 is greater than DA2, then DA1 is superior in terms
of Max Belief and Residual Risk.

Table 5 reports the DAT of the root node, the goal G1 – Arrival Traffic Managed Safely
in the hypergraph in Figure 11. Based on this table, we can compute the Max Belief
and Residual Risk of any design alternative as denoted in Equation 2.

For example, given a design alternative C =
{G9,G12,G6,G7,G11,G15,G16,G17,G19,G20}, the Max Belief and Residual Risk of C
are computed as follows.

− Identify design alternatives supported by C. The design alternatives outlined
in bold in Table 1 DA2, DA3, DA4, DA8, DA9, DA10 are the design alternatives
supported by design alternative C.

SDA(C) = {DA2, DA3, DA4, DA8, DA9, DA10}

− Remove alternatives that have duplicated trail (T). Among selected
alternatives, DA2, DA3 have a same trail, and DA8, DA9 also have the same trail.
Thus, we remove DA3, DA9 from SDA(C)

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 27/136

SDA(C) = {DA2, DA4, DA8, DA10}

− Calculate the Max Belief and Residual Risk.

Max Belief(C) = max{0.054, 0.048, 0.189, 0.168} = 0.189

Residual Risk(C) = 1 – (1 – 0.946) + (1 – 0.952) + (1 – 0.811) + (1 – 0.832) = 0.541

Similarly, we can compute the Max Belief and Residual Risk of all design alternatives
as follows.

Design Alternative (DA) MB RR Trail (T)

DA1 G9,G6,G7,G10,G11 0.018 0.982 {⟨ro1,0},⟨ro2,0⟩}
DA2 G9,G6,G7,G11,G15 0.054 0.946 {⟨⟨⟨⟨ro1,0⟩⟩⟩⟩,⟨⟨⟨⟨ro2,1⟩⟩⟩⟩}

DA3 G9,G6,G7,G10,G11,G15,G16,G17 0.054 0.946 {⟨⟨⟨⟨ro1,0⟩⟩⟩⟩,⟨⟨⟨⟨ro2,1⟩⟩⟩⟩}

DA4 G9,G6,G7,G10,G11, G15,G16,G17,G19,G20 0.048 0.952 {⟨⟨⟨⟨ro1,0⟩⟩⟩⟩,⟨⟨⟨⟨ro2,2⟩⟩⟩⟩}

DA5 G9,G6,G7,G10,G11, G15,G16,G17,G19,G21 0.048 0.952 {⟨ro1,0⟩,⟨ro2,2⟩}
DA6 G9,G6,G7,G11,G15,G16,G17,G19,G20,G21 0.048 0.952 {⟨ro1,0⟩,⟨ro2,2⟩}
DA7 G9,G12,G6,G7,G10,G11 0.063 0.937 {⟨ro1,1⟩,⟨ro2,0⟩}
DA8 G9,G12,G6,G7,G11,G15 0.189 0.811 {⟨⟨⟨⟨ro1,1⟩⟩⟩⟩,⟨⟨⟨⟨ro2,1⟩⟩⟩⟩}

DA9 G9,G12,G6,G7,G11,G15,G16,G17 0.189 0.811 {⟨⟨⟨⟨ro1,1⟩⟩⟩⟩,⟨⟨⟨⟨ro2,1⟩⟩⟩⟩}

DA10 G9,G12,G6,G7,G11,G15,G16,G17,G19,G20 0.168 0.832 {⟨⟨⟨⟨ro1,1⟩⟩⟩⟩,⟨⟨⟨⟨ro2,2⟩⟩⟩⟩}

DA11 G9,G12,G6,G7,G11,G15,G16,G17,G19,G21 0.168 0.832 {⟨ro1,1⟩,⟨ro2,2⟩}
DA12 G9,G12,G6,G7,G11,G15,G16,G17,G19,G20,G21 0.168 0.832 {⟨ro1,1⟩,⟨ro2,2⟩}
DA13 G9,G13,G6,G7,G10,G11 0.063 0.937 {⟨ro1,1⟩,⟨ro2,0⟩}
DA14 G9,G13,G6,G7,G11,G15 0.189 0.811 {⟨ro1,1⟩,⟨ro2,1⟩}
DA15 G9,G13,G6,G7,G11,G15,G16,G17 0.189 0.811 {⟨ro1,1⟩,⟨ro2,1⟩}
DA16 G9,G13,G6,G7,G11,G15,G16,G17,G19,G20 0.168 0.832 {⟨ro1,1⟩,⟨ro2,2⟩}
DA17 G9,G13,G6,G7,G11,G15,G16,G17,G19,G21 0.168 0.832 {⟨ro1,1⟩,⟨ro2,2⟩}
DA18 G9,G13,G6,G7,G11,G15,G16,G17,G19,G20,G21 0.168 0.832 {⟨ro1,1⟩,⟨ro2,2⟩}
DA19 G9,G12,G13,G6,G7,G10,G11 0.069 0.931 {⟨ro1,2⟩,⟨ro2,0⟩}
DA20 G9,G12,G13,G6,G7,G11,G15 0.207 0.793 {⟨ro1,2⟩,⟨ro2,1⟩}
DA21 G9,G12,G13,G6,G7,G11,G15,G16,G17 0.207 0.793 {⟨ro1,2⟩,⟨ro2,1⟩}
DA22 G9,G12,G13,G6,G7,G11,G15,G16,G17,G19,G20 0.184 0.816 {⟨ro1,2⟩,⟨ro2,2⟩}
DA23 G9,G12,G13,G6,G7,G11,G15,G16,G17,G19,G21 0.184 0.816 {⟨ro1,2⟩,⟨ro2,2⟩}
DA24 G9,G12,G13,G6,G7,G11,G15,G16,G17,G19,G20,G21 0.184 0.816 {⟨ro1,2⟩,⟨ro2,2⟩}

Table 5. The DAT of the root node of the hypergraph in Figure 11.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 28/136

6 Automatic Generation of Change
Reactions

The SeCMER methodology includes a lightweight automated analysis step that
evaluates requirements-level compliance with security principles. These security
principles are declaratively specified by an extensible set of security patterns. A
security pattern expresses a situation (a graph-like configuration of model elements)
that leads to the violation of a security property. Whenever a new match of the security
pattern (i.e. a new violation of the security property) emerges in the model, it can be
automatically detected and reported. The specification of security patterns may also be
augmented by automatic reactions (i.e. templates of corrective actions) that can be
applied in case of a violation to fix the model and satisfy the security property once
again.

This section presents an inductive mechanism for automated change reactions
generation. The generated reactions to changes can be recorded to be used later
when similar security violations are detected.

6.1 Inductive mechanisms to automatic change
reactions generation

Design space exploration is the evaluation of design alternatives based on some
constraints and parameters to find optimal solutions. Model transformation and
incremental pattern matching can be combined with design space exploration to
generate model manipulation sequences that lead to a preferred model state. In the
case of requirements engineering with the SecMER tool, it can calculate different
change reactions consisting of multiple manipulation steps in order to remove a
violation and reach the fulfilment of security goals (see deliverable D3.3 delivered at
M24). Both the desired and undesired situations related to goals and violations,
respectively, can be described as graph patterns. Furthermore, the incremental
evaluation and automatic detection of violations and fulfilment is also possible.

In some cases a violation introduced by a manual change cannot be trivially corrected,
therefore it is possible to support the user by computing violation corrections generated
by an automated process. These corrections possibilities are then evaluated by the
user [4].

Change reaction can be computed by systematically exploring the design space of the
model using a model-driven framework (see Figure 12). The inputs of the exploration
are the instance model (and a selected model element in the violation), the goals that
can be fulfilled, and the set of change operations.

The design space exploration framework first queries the goals over the instance
models to find violations, then attempts to execute change operations in the context of
the violations. Op represents the list of applicable operations, while Ve is the context of
the violations. At each explored model state, the goals are evaluated again and the
sequence of change operations (leading to the given state) together with the

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 29/136

application contexts is saved if the goals are fulfilled. These sequences are complex
change reactions, which are evaluated by the user and applied on the model if
selected.

Figure 12. Quick fix generation algorithm

The set of change operations in requirement engineering includes adding new actors,
creating or removing trust relations etc. These operations can be defined using model
transformation rules, each including a precondition and an action part. The
precondition restricts the applicability of the operation (such as a trust relation can be
created only between existing elements with the appropriate type).

Once the user selects one of the generated quick fixes to be applied on the model,
there is also a possibility of storing the quick fix as a complex change reaction. In order
to create a reusable change reaction, its signature must be defined. The signature
contains the list of elements that can be used as an application context for the change
reaction. When applying the recorded change reaction using a given signature,
undefined elements and variables not present in the signature but used in the
sequence of operations are selected using pattern matching.

Apart from the design space exploration approach, it is also possible to record change
reactions for future use by recording manual changes performed by the user on in the
editor. In this case, the framework could use inductive reasoning to determine the
signature for the recorded change reaction.

Further enhancement to the approach could include an automated initialization of
capturing when a given event occurs (such as the appearance of a violation), then
each performed action would be recorded until the violation is corrected. Thus the
recording can be controlled using evolution triggers.

This way of learning complex change reactions that can be used to respond to
violations and evolution triggers leads to an inductive framework, where each change
reaction further enhances the response capabilities of the quick fix generation tool, and
increases the usefulness of this feature.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 30/136

6.2 Application to the ATM case study

Since [4] used a different case study, we now illustrate briefly how the inductive
approach can be used in the ATM case study, in particular the introduction of the
AMAN. We consider the starting situation where System Engineer has delegated
permission on the CWP including Flight Data and State Flight Info, but its tasks or
goals use only the CWP software part (see the left side of the figure below). In order to
fulfil the least privilege principle, a change reaction might perform a modification of
permissions to delegate only the required parts of CWP.

Figure 13. ATM model state before quick fix application

The goal of the quick fix generation in this case is to check that an actor has been
delegated the permission to data only if it is used in at least one of its tasks or goals.
The exploration would apply change operations for removing and creating delegation
relations until there is no violating delegation. An example generated inductive rule is
the following:

quick fix rule quick fix rule quick fix rule quick fix rule correctLeastPriviligeViolationOnData(D,RDd,A) {

 precondition precondition precondition precondition leastPriviligeViolationOnData(D,RDd,A);

 action action action action {

 callcallcallcall substituteDataPriviligeToParts(D,RDd,A);

 call call call call removeUnusedDataPriviligeOnActor(A);}

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 31/136

Figure 14. ATM model state after quick fix application

A possible solution model is demonstrated on the Figure 14. Once either the engineer
or the exploration found the complex change reaction that corrects the least privilege
violation, the framework can store it for future use. In this case, the precondition of the
reaction is the goal, and the signature is the violation. The included simple operations
replace the single delegation of permission with similar relations on the subparts, and
finally remove the relations that are not needed since the data is not used.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 32/136

7 CONCLUSIONS

The objective of Work Package 3 is to develop the concepts and basic building blocks
for the management of evolving requirements. During the first and second year of the
project, the activity of Work Package 3 has produced two main artefacts: the SeCMER
conceptual model for evolving requirements, the SeCMER methodology for evolving
requirements which have been presented in D3.2 and a first version of the SeCMER
tool which supports the methodology steps presented in D3.4 delivered at M24. During
the third year of the project, Work Package 3 activities have focused on the integrability
of the results of Year 2 into industry practice. The results of the activity for integrability
of Work Package 3 results into industrial processes have been documented in this
deliverable. The results can be applied into industrial processes and can
facilitate/improve the change management process.
In addition to that, the SeCMER tool has been improved based on the feedbacks
collected during the validation activities with ATM experts. The tool interface has been
made user-friendly and the ability to detect new types of security violations such as
need to know principle violation has been implemented. The enhanced version of the
tool is presented in deliverable D3.4 delivered at M36.

The results of Work Package 3 have contributed to advance the state-of-the art on
requirements evolution management. In particular, the SeCMER methodology helps
the requirement analysts in managing changes in requirements model by means of
decision support artefacts and tools such as change driven transformation and
argumentation analysis. Change driven transformations provide automatic detection of
requirement changes and violation of security properties, while argumentation analysis
helps to check whether security properties are preserved by evolution and to identify
new security properties that should be taken into account. Compared with other
academic and industrial tools for requirements management, the SeCMER tool
provides decision support to the requirement analyst for handling security-related
changes. The tool supports automatic detection of requirement changes that lead to
violation of security properties using change-driven transformations and suggests
possible corrective actions. The tool also supports argumentation analysis to check
security properties are preserved by evolution and to identify new security properties
that should be taken into account.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 33/136

References

[1] Yudis Asnar, Fabio Massaci, Federica Paci, Bjornar Solhaugh. “A Change Driven Interplay
between Requirement Engineering and Risk Assesment Processes”. Submitted to CAISE
2012.

[2] Minh Sang Tran, Fabio Massacci. “Dealing with Known Unknowns: A Goal-based
Approach for Understanding Complex Systems Evolution. Submitted to Software and
System Modeling, 2012.

[3] Gábor Bergmann, István Ráth, Gergely Varró, Dániel Varró. “Change-Driven Model
Transformations. Change (in) the Rule to Rule the Change”. In Software and System
Modeling, 2011.

[4] Ábel Hegedüs, Ákos Horváth, István Ráth, Moises C. Branco, Dániel Varró. “Quick fix
generation for DSMLs” In IEEE Symposium on Visual Languages and Human-Centric
Computing, VL/HCC 2011, Pittsbourgh, PA, USA, IEEE Computer Society, 18-22
September 2011.

[5] Virginia N. L. Franqueira, Thein Than Tun, Yijun Yu, Roel Wieringa, Bashar Nuseibeh,
“Risk and argument: A risk-based argumentation method for practical security” In 19th
IEEE International Requirements Engineering Conference, 239-248, IEEE, 2011.

[6] Charles B. Haley, Robin C. Laney, Jonathan D. Moffett, Bashar Nuseibeh, “Security
Requirements Engineering: A Framework for Representation and Analysis” IEEE Trans.
Software Eng. 34(1): 133-153, 2008.

[7] Yijun Yu, Thein Than Tun, Alessandra Tedeschi, Virginia N. L. Franqueira, Bashar
Nuseibeh. “OpenArgue: Supporting argumentation to evolve secure software systems”. In
19th IEEE International Requirements Engineering Conference, 351-352, IEEE, 2011.

[8] DOORS. http://www-01.ibm.com/software/awdtools/doors/.

[9] Eclipse Modeling Framework (EMF)http://www.eclipse.org/modeling/emf/.

[10] Eclipse Graphical Modeling Framework
(GMF)http://en.wikipedia.org/wiki/Graphical_Modeling_Framework.

[11] EBIOS. http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html

[12] CORAS, http://coras.sourceforge.net/, SINTEF.

[13] CRAMM, http://www.cramm.com, Siemens.

[14] OCTAVE, http://www.cert.org/octave/, Carnegie Mellon.

[15] BSIMM, Building Security In Maturity Model, http://bsimm.com/.

[16] ISO/IEC 15288, Systems and software engineering — System life cycle processes, ISO,
2008.

[17] ISO/IEC 12207, Systems and software engineering — Software life cycle processes, ISO,
2008.

[18] ISO/IEC FCD 42010, Architecture description, draft.

[19] V. Normand, E. Félix, “Toward model-based security engineering: developing a security
analysis DSML”, ECMDA-FA, 2009

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 34/136

APPENDIX A

Managing Changes with Legacy Security Engineering
Processes

Edith Felix, Olivier Delande
Thales

Palaiseau, France
{edith.felix,olivier.delande}@thalesgroup.com

Fabio Massacci, Federica Paci
Department of Information Engineering and Computer

Science
University of Trento

Povo, Trento
 {Fabio.Massacci,Federica.Paci}@unitn.it

Abstract— Managing changes in Security Engineering is a
difficult task: the analyst must keep the consistency between
security knowledge such as assets, attacks and treatments to
stakeholders' goals and security requirements. Research-wise the
usual solution is an integrated methodology in which risk,
security requirements and architectural solutions are addressed
within the same tooling environment and changes can be easily
propagated.

This solution cannot work in practice as the steps of security
engineering process requires to use artefacts (documents, models,
data bases) and manipulate tools that are disjoint and cannot be
fully integrated for a variety of reasons (separate engineering
domains, outsourcing, confidentiality, etc.). We call such
processes legacy security engineering processes.

In this paper, we propose a change management framework for
legacy security engineering processes. The key idea is to separate
concerns between the requirements, risk and architectural
domains while keeping an orchestrated view (as opposed to an
integrated view). We identify some mapping concepts among the
domains so that little knowledge is required from the
requirement manager about the other domains, and similarly for
security risk manager and the system designer: they can stick to
their well known (and possibly certified) internal process. This
minimal set of concepts is the interface between the legacy
processes. The processes are then orchestrated in the sense that
when a change affects a concept of the interface, the change is
propagated to the other domain.

We illustrate this example by using the risk modeling language
(Security DSML) from Thales Research and the security
requirement language (SI*) from the Univ. of Trento.

System and software engineering life cycle, Security
engineering, Security risks, Requirements, Tooling

 INTRODUCTION

Change management in security engineering is a particularly
daunting task not only because of the inherently difficulty of
the task but also for two concerning factors that characterize
modern production in an industrial environment.
System and software engineering in industry is a complex
process that is subject to many standard and certification

processes, in particular when the critical security
infrastructures is at stake.
The need to show compliance with standards e.g ISO 15288
and ISO 12207, respectively for system and software
engineering makes often the engineering process quite rigid.
Such rigidity is further increased when those security aspects
must be further taken into account. Security standards or best
practices must be considered such as ISO 27000,
EBIOS,CORAS, CRAMM, OCTAVE, BSIMM [16-20]. The
design process must also be compliant with those standards.
For complex systems the security engineering process is also
inevitably supported by artefacts (UML models of the system
to be, DOORS format for requirements [9], UML risk profiles
in CORAS [17] etc), and large companies tend to adapt and
customize these artefacts to fit their needs and application
domains [14,15]. The combination of these two factors makes
each step of security engineering process highly customized
and highly rigid and de facto unchangeable, as the switching
cost would be too high. We end up with the combination of
legacy software engineering processes.
So what happens when a security requirement or a threat
model changes? For example, in the air traffic management
domain, 9/11 has dramatically changed the threat model and
implied a different design of the “interface” between cabin and
cockpit. Changes must percolate through these structures and
they might not get through completely. The solutions proposed
by most researchers is to have a unique process integrating
security requirements, risk assessment and security
architectures [1,2,3].

Contribution of the paper
In this paper we propose a security engineering process where
the presence of proprietary steps is not a liability. We focus
our attention on the interactions between the security risk
manager, the requirement manager, and the system designer
and we show how the activities performed by these
stakeholders can be orchestrated. The key feature of the
orchestrated process is separation of concern principle. An
important advantage of separation of concern is that in-depth
expertise in the respective domains is not a prerequisite. The

orchestrated process allows the separate do
on each other without the need of full
counterpart, consistency of concerns should
assume that security risk manager, the requ
and the system designer share a minimal set
is the interface between their respective
process is conducted separately and only
affects a concept of the interface, the chang
the other domain.

The paper is structured as follows. Section
running example based on the evolution of A
is taking place as planned by the Single Eu
Research (SESAR) Initiative. In Section III
requirement and the security and system dom
Security DSML modeling languages respec
IV we present the interface between the sy
process and the risk analysis process. In Sec
the importance of including risk analy
engineering process and we illustrate a sec
process based on the collaboration between
manager, the requirement manager, and the
In section VI, we illustrate the orchestrated
the running example in Section II. Section V
works. Section VIII concludes the paper.

II. RUNNING EXAMPLE

To illustrate the change propagation proc
on the ongoing evolution of Air Traffic Ma
systems planned by the ATM 2000+ Strateg
Single European Sky ATM Research (SESA

Part of ATM system’s evolution process i
of a new decision support tool for air
(ATCOs) called Arrival Manager (AMAN) i
higher traffic loads. The main goal of the A
ATCOs to manage and better organize the
the approach phase. The introduction of the
new operational procedures and functions
security properties to be satisfied. Before th
AMAN, the Sector Team1 had to manu
operations related to the approach phase: the
arrival sequence and the allocation of runawa
the operations that were manually done by
performed by the AMAN such as providin
metering capabilities for runways, airports or
creating an arrival sequence using ’ad hoc’
and modifying proposed sequences, su
allocation at airports with multiple runway c
generating advisories for example on the tim
or on the aircraft speed. The introductio
requires also the addition of a new role
called Sequence Manager (SQM), who w
modify the sequences generated by the

1 The sector team consists of a Tactical Controller and a

omains to leverage
integration. As a
d be ensured. We
uirement manager,
of concepts which

e processes: each
y when a change
ge is propagated to

n II introduces the
ATM systems that
uropean Sky ATM

we instantiate the
mains with SI* and
ctively. In Section
ystem engineering
tion V, we outline
ysis into system
curity engineering
n the security risk
e system designer.
d process based on
VII presents related

E

ess, we will focus
anagement (ATM)
ic Agenda and the

AR) Initiative [4].
is the introduction
traffic controllers
in order to support
AMAN is to help
air traffic flow in

e AMAN requires
and imposes new
he addition of the

ually perform the
e generation of the
ays. Now, some of
Sector Teams are

ng sequencing and
r constraint points,
criteria, managing

upporting runway
configurations, and
me to lose or gain,
n of the AMAN
between ATCOs,
will monitor and
AMAN and will

a Planning Controller.

provide information and update

III. BACK
We instantiate the requirement
risk framework to Security DSM
SI* is a requirement framework
late requirement analysis. SI*
this paper we focus on the trust
[2]. We only consider a sub
AND/OR decomposition, mea
dependency and trust relations
object [5] concept which is a c
and

Figure 1. Examp

The requirement analysis con
relevant stakeholders, model
structure; 2) Capture and re
rectangle); 3) Define means
resource (rectangle) - to ac
strategic dependencies
fulfilling/executing/providing s
5) Model specific aspects such
e.g introduce security goals, w
fulfillment of security propertie
level of high-level goals, such a

The requirement analysis is an
refining the stakeholders' goals
The results of the analysis proc
as the one in Figure 1 illu
introduced in Section 2. The
Planning Controller (PLC),
Radar and Flight Data Proc
one main goal that is Man
decomposed into Manage
Manage Incoming Traffic
delegated to TCC who fulfills b

es to the Sector Team.

KGROUND
t framework to SI* [3] and the
ML [13].
k which supports both early and
 has several extensions, but in
t and risk extension proposed in
bset of SI* relations, namely
ans-end, require, request, and
. We also consider the business

combination of goals, processes,
resources.

ple of SI* model

nsists of five steps: 1)Identify
led as actor (circle) and its
efine actor’s goals (rounded
s - i.e., process (hexagon) or
chieve their goals; 4) Model

between actors in
some goals/processes/resources;
as security or risk:

which are goals concerning the
es [1] or assess the achievement
as risk level [2].

n iterative process that aims at
s until all goals are achieved.
cess are captured by a SI* model
ustrating the running example

model consists of four actors:
, Tactical Controller (TCC),
cessor (FDPS). The PLC has
nage Aircraft Safety that is
Aircraft in the Sector and
subgoals. The latter goal is

by providing the process

Figure 2. An example of Security DSML model

Compute Arrival Sequence. This task requires the resources
Flight Data and Surveillance Data that are provided by the
FDPS and the Radar respectively.

Security DSML is the language and a tool developed to
capture the security risk analysis concepts derived from the
French EBIOS methodology [16]. As a tool, Security DSML
realizes a Viewpoint of a system Architecture Model as defined
in coming ISO 42010 standard [23].

The main security concepts are the following:
• Essential element: an element of the system at

Business Architecture or Service-oriented
Architecture Plans.

• Damage: the impact related to a risk on the
essential elements of system.

• Target: an element of the system potentially
threatened by one or more threats.

• Vulnerability: weakness in a system, system
security procedures, internal controls, or
implementation that could be exploited.

• Threat: any circumstance or event with the
potential to adversely impact a system through
unauthorized access, destruction, disclosure,
modification of data, and/or denial of service.

• Risk: possibility that a particular threat will
adversely damage an element of the system
design.

• Security objective: expression of the intention to
counter identified risks by goals regarding the
security of the system.

• Security requirement: a functional or assurance
general specification covering one or more
security objectives.

• Security solution: a security measure that
implements a security requirement.

Figure 2 shows the ATM example. The model starts from the
activity TCC computes the sequence called an Essential
Element in Security DSML language. A potential Damage

Failure in the provisioning of correct or optimal arrival
information is identified. The ATCO2 as supporting elements
of the activity, called Targets in Security DSML, are
vulnerable to High coordination workload, and are subject to
the Threat ATCO mistake. Then the Risk Failure in the
provisioning of correct or optimal arrival information is
identified, which has a high risk level, which needs to be
reduced to at least medium.

IV. CONCEPUAL MAPPING
Even though conducted separately, the requirement analysis,
and the risk analysis processes can be orchestrated so that they
can benefit from the respective results. In order to allow the
orchestration between these processes, we need to identify a set
of concepts that is the interface between them (see Table I).

TABLE I. INTERFACE

 Conceptual Mapping
Requirement Risk Architecture Type

Business Object Essential Element Shared

Goal Security Objective Mapped

Security Goal Security
Requirement

 Mapped

Process Security
Solution Mapped

We distinguish the interface concepts in shared elements and
mappable elements. The shared elements are model elements
that conceptually have the same semantic in the three domains.
The mappable elements are elements from one domain that are
not shared by the other, but nevertheless can be mapped to
elements of the other domain.

When a change affects a mappable or shared element in one
domain such change is propagated to the other domain. The
following table summarizes the conceptual mapping.

V. CHANGE MANAGEMENT PROCESS
International standards like ISO/IEC 15288:2008 and ISO/IEC
12207:2008 [21, 22] describe the system and software life
cycle of the engineering process and including clauses
mentioning that non-functional properties such as security
should be considered in different phases.

In security specialty engineering, risk analysis
methodologies such as EBIOS, CORAS or CRAMM serve
security risk managers to produce a rationale for security
requirements and assess the risks in an exhaustive way, as
needed in domains such as administration or military systems.
The risk management process does not cover the entire security
engineering activities but is a key starting point to them.

Thus a first issue is to show how the risk management process
and security requirement analysis can collaborate with the
global system engineering process described in those

2 ATCO stands for Air Traffic Controller, which here means Planning
Controller (PLC) and Tactical Controller (TCC).

 engineering standards. The difficulty reside
iterations needed to refine the security require
vulnerabilities and risks will appear only
architectural design has been set up.

This article focuses on how the risk en
which has been standardized independently c
into the overall system engineering process
investigate how the processes Stakehold
Definition (Clause 6.4.1), Requirements
6.4.2), and Architectural Design (Clause 6
ISO/IEC 12207 can be orchestrated w
methodology activities (see Figure 3).

The resulting orchestrated process is rep
4. The stakeholder relationship3 technical
needs and requirements from the stakeholde
He pushes the information related to secu
security risk manager who expresses the u
and defines the first security objectives.
relationship technical manager validates the
with the stakeholders and consolidates the
them to the requirement manager. Then
manager consolidates them with requirem
stakeholders and sends all the requiremen
designer.

The system designer analyzes the requ
6.4.2) and defines the functions of the sys
done, the security risk manager updates the
(Activity 1) based on the functions of the sy
damages (Activity 2), adds some security ob
8), defines first security requirements (Acti
them to the system designer and to the requ

3 The stakeholder relationship manager in the ma
engineering framework is called requirement manager

es in the necessary
ements since some
once the system

ngineering process
can be orchestrated
s. In particular we
der Requirements
Analysis (Clause
.4.3) processes of

with EBIOS risk

resented in Figure
manager gets the

ers (Clause 6.4.1).
urity needs to the
unwanted damages

The stakeholder
security objectives
m before sending

n the requirement
ments from other
nts to the system

uirements (Clause
stem. Once this is
essential elements

ystem, updates the
bjectives (Activity
ivity 9) and sends
uirement manager.

ajority of requirement

The system designer validates
the design authority who propag

The system designer procee
system, allocating functions to
6.4.3). This new organization
analyzed by the security risk m
the risks and defines security so
sends the updates of the sec
designer who consolidates the
architectural design with the d
it. Architectural design an
propagated to the system engin
engineering manager for them
physical layer and implemen
6.4.4).Once he has chosen the
engineering manager sends the
manager for targets and
(Activities 3 and 4) and a full
cycle (Activities 5 to 10).

The updates are passed th
manager to the system engi
engineering manager validates
existing elements of the im
authority.

VI. APPLICATION T
Here we illustrate some of the
that involves the security ri
engineer and the system des
scenario introduced in Section
1) The stakeholder relationsh

security risk manager inte
security objectives to b
manager.

Figura 3. ISO/IEC 12207 vs EBIOS process

the requirements analysis with
gates it.

eds to architectural design of the
elements of the system (Clause
of the model of the system is

manager who evaluates carefully
olutions (Activities 3 to 10), and
curity solutions to the system
system design and validates the

design authority who propagates
d updated requirements are

neering manager and the security
m to complete the design at

nt it (Clause 6.4.3 and Clause
security solutions, the security

e information to the security risk
vulnerabilities determination

update of the risk management

hrough the security engineering
neering manager. The system
the architectural design and the

mplementation with the design

TO THE ATM DOMAIN
e steps of the integrated process
isk manager, the requirement
signer, by using the evolution
II.
hip technical manager and the

eract to identify an initial set of
be passed to the requirement

Figure 4.ISO/IEC 12207 sub-set of processes and
diagram

2) The stakeholder relationship technical m
requirements proposed by the stakehold
security objectives to the requirement m
request is triggered for the requirement
model illustrated in Figure 1 is p
requirement manager.

3) The system designer analyzes the SI* m
the requirement manager and then passe
risk manager.

4) The security risk manager identifies th
security objectives:

• O1 The system shal
automatically by an Arrival
that covers the risk

o R1 Failure in the
correct or optimal ar
due to ATCO mistake

• O2 The update of the system s
through a dedicated role of S
that covers the risk R1.

 The above security objectives are
following security requirements:
 RE1 The system should int

(refines security objective O1)
 RE2 The organization should

(refines security objective O2).
 Figure 5 represents the Securit
updated with the new security objec
requirements.

5) The changes into the Security DSML
change request for the requiremen
requirement manager receives the new s
and requirements and updates the SI* m
Figure 6: two new actors, AMAN and th
added with their goals, process and resou

6) The new processes Compute Arrival Se
by AMAN and Monitor and Modify p
identified by the requirement mana

d EBIOS collaboration

manager passes the
ders and the initial
manager. A change
t domain: the SI*
produced by the

model provided by
es it to the security

he following new

ll be computed
Manager system

provisioning of
rrival information
s.
should be handled

Sequence Manager

e refined into the

tegrate an AMAN

integrate a SQM

ty DSML model
ctives and security

L model trigger a
nt domain. The
security objectives

model as shown in
he SQM have been
urces.
equence provided
provided by SQM
ager has to be

propagated to the system d
manager.

Figure 5. Security DSML Model after

 The security risk manage
proposed by the requirem
security solutions to matc
in Figure 5). Then, the se
identified security solutio
validation.

Figure 6. SI* Model after the intr

VII. RELAT
The predominant standards
engineering are ISO/IEC 15288
ISO/IEC 42010 [23] stand
vocabulary and framework fo
and specialty engineering vie
common architecture descriptio

Among the security risk anal
based on UML environment an
for structured diagrams. EBIO
EBIOS 2010 methodology
architectural engineering enviro

Existing requirement engi
extended to include security

designer and to the security risk

r the introduction of AMAN

er assesses the new processes
ment manager and defines new
ch the processes (outlined in red
ecurity risk manager passes the
ons to the system designer for

roduction of the AMAN and SQM

TED WORK
for system and software

8 and 12207 [21, 22]. Upcoming
dard describes the common
r working on several concerns
ewpoints which all refer to a
on.

lysis methods CORAS [17] is
nd has proposed new techniques
OS [16] released a simplified
which is more suitable for

onment.
ineering proposals have been

concepts in the requirement

conceptual models and to support security related analysis. Van
Lamswerde extended KAOS [1] by introducing the notion of
obstacles to capture exceptional behaviours and anti-goals to
model the intention of an attacker to threaten security goals.
Massacci et al.[3] have defined Secure Tropos for modeling
and analyzing authorization, trust and privacy concerns. Haley
et al. [6] extend problem frames to determine security
requirements for the system by considering possible security
threats. Elahi et al. [7] extend i* with security related notions
(e.g., attacker, vulnerability, malicious goal) for capturing and
analyzing the impact of vulnerabilities to software systems.
Asnar et al. [2] extend also i* with the notion of uncertain
events and treatments to support the risk assessment process
into requirement engineering process.

With respect to these proposals, our work does not require
to extend existing requirement frameworks at modeling and
process level but it just requires the requirement analyst and the
risk analyst to share the understanding of a set of concepts to
be able to communicate and share the results of the respective
analysis processes. Moreover, our orchestrated process has also
another advantage: it supports change propagation between the
requirement and risk domain which is enabled by the shared
interface.

In fact, only some requirement engineering proposals
provide support for handling change propagation and for
change impact analysis.

Chechik et al. [11] propose a model-based approach to
propagate changes between requirements and design models
that utilize the relationship between the models to
automatically propagate changes. Hassine et al. [12] present an
approach to change impact analysis that applies both slicing
and dependency analysis at the Use Case Map specification
level to identify the potential impact of requirement changes on
the overall system. Lin et al. [10] propose capturing
requirement changes as a series of atomic changes in
specifications and using algorithms to relate changes in
requirements to corresponding changes in specifications.

VIII. CONCLUSIONS
We have proposed a change management framework for
legacy security engineering processes. The key idea is to
separate concerns between the requirements, risk and
architectural domains while keeping an orchestrated view. The
orchestration has been based on the mapping of concepts
among the domains so that little knowledge is required from
the requirement manager about the other domains, and
similarly for security risk manager and the system designer.
The processes are then orchestrated in the sense that when a
change affects a concept of the interface, the change is
propagated to the other domain.

We have illustrated the framework using an example of
evolution taken from the air traffic management domain. We
are planning to apply the framework to other industrial case
studies e.g the evolution of multi-application smart cards.

ACKNOWLEDGMENT
This work has been partly funded by EU project - Network of
Excellence on Engineering Secure Future Internet Software
(NESSoS) and by the EU-FP7-FET-IP-SecureChange project.

REFERENCES
1. A. van Lamsweerde, “Elaborating security requirements by construction

of intentional anti-models,” in Software Engineering, 2004. ICSE 2004.
Proceedings. 26th International Conference on, 2004, pp. 148–157.

2. Y. Asnar, P. Giorgini, and J. Mylopoulos, “Goal-driven risk assessment
in requirements engineering,” Requirements Engineering, pp. 1–16, (to
appear).

3. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone,
“Requirements engineering for trust management: model, methodology,
and reasoning,” International Journal of Information Security, vol. 5, no.
4, pp. 257–274, Oct. 2006.

4. EUROCONTROL, “ATM Strategy for the Years 2000+,” 2003.
5. Y. Asnar, P. Giorgini, P. Ciancarini, R. Moretti, M. Sebastianis, and N.

Zannone, “Evaluation of business solutions in manufacturing
enterprises,” International Journal on Business Intelligence and Data
Mining, vol. 3, no. 3, pp. 305 – 329, 2008.

6. C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security requirements
engineering: A framework for representation and analysis,” IEEE Trans.
Softw. Eng., vol. 34, pp. 133–153, January 2008.

7. G. Elahi, E. Yu, and N. Zannone, “A vulnerability-centric requirements
engineering framework: analyzing security attacks, countermeasures,
and requirements based on vulnerabilities,” Requirements Engineering,
vol. 15, pp. 41–62, 2010.

8. L. Liu, E. Yu, and J. Mylopoulos, “Security and privacy requirements
analysis within a social setting,” in Proceedings of the 11th IEEE
International Conference on Requirements Engineering. Washington,
DC, USA: IEEE Computer Society, 2003, pp. 151–161.

9. DOORS. http://www-01.ibm.com/software/awdtools/doors/.
10. L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett, “Introducing

abuse frames for analysing security requirements,” in Proceedings of the
11th IEEE International Conference on Requirements Engineering.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 371–372.

11. M. Chechik, W. Lai, S. Nejati, J. Cabot, Z. Diskin, S. Easterbrook, M.
Sabetzadeh, and R. Salay, “Relationship-based change propagation: A
case study,” in Proceedings of the 2009 ICSE Workshop on Modeling in
Software Engineering, ser. MISE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 7–12.

12. J. Hassine, J. Rilling, and J. Hewitt, “Change impact analysis for
requirement evolution using use case maps,” in Proceedings of the
Eighth International Workshop on Principles of Software Evolution.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 81–90.

13. V. Normand, E. Félix, “Toward model-based security engineering:
developing a security analysis DSML”, ECMDA-FA, 2009.

14. Eclipse Modeling Framework
(EMF)http://www.eclipse.org/modeling/emf/.

15. Eclipse Graphical Modeling Framework
(GMF)http://en.wikipedia.org/wiki/Graphical_Modeling_Framework.

16. EBIOS. http://www.ssi.gouv.fr/en/confidence/ebiospresentation.html
17. CORAS, http://coras.sourceforge.net/, SINTEF.
18. CRAMM, http://www.cramm.com, Siemens.
19. OCTAVE, http://www.cert.org/octave/, Carnegie Mellon.
20. BSIMM, Building Security In Maturity Model, http://bsimm.com/.
21. ISO/IEC 15288, Systems and software engineering — System life cycle

processes, ISO, 2008.
22. ISO/IEC 12207, Systems and software engineering — Software life

cycle processes, ISO, 2008.
23. ISO/IEC FCD 42010, Architecture description, draft.

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 42/136

APPENDIX B

A Change-Driven Interplay between Requirement
Engineering and Risk Assessment Processes

Yudistira Asnar1, Fabio Massacci1, Federica Paci1, and Bjørnar Solhaug2

1 DISI - University of Trento,
{yudis.asnar, fabio.massacci,federica.paci}@unitn.it

2 SINTEF ICT, Norway
bjornar.solhaug@sintef.no

Abstract. Maintaining links between security knowledge and requirements is
crucial to analyze the impact of requirements evolution on the system’s security
risks and vice versa. Some security requirements engineering proposals aim to
create a link with the security risk domain by extending requirement conceptual
models and by including security risk analysis as part of the requirement engi-
neering process. These approaches facilitate change propagation, but they do not
correspond to the practice in industrial software/system engineering processes:
risk assessment and requirement elicitation activities are usually conducted sepa-
rately. This paper proposes an approach for change propagation between require-
ment engineering and risk assessment activities that is based on orchestration
rather than on integration. The orchestration relies upon mappings between key
concepts of the requirement and the risk conceptual models. Key aspects of the
approach are separation of concern and bidirectional consistency of requirement
and risk models.

1 Introduction

Changing requirements might give rise to potential security risks that in turn require
some treatments to ensure and maintain an acceptable security risk level. Or treatment
options that result from risk assessment may lead to new security requirements that
should be included in the requirement model. Moreover, the requirement changes may
involve new assets the risk level of which needs to be assessed. Thus, there is the need
to trace changes to security knowledge such as assets, attacks and treatments to stake-
holders’ goals and security requirements and vice versa.

The problem of creating a “link” between risk and requirements is important and
has been investigated in several research works [2, 15, 23–25]. These frameworks have
addressed the problem by extending requirements conceptual models with security re-
lated concepts and by incorporating risk analysis into the requirement analysis. These
approaches work well in theory because they facilitate change propagation. However,
these approaches do not reflect the common practice in industrial software/system en-
gineering processes. Software/system engineering processes are supported by artifacts
(documents, models, data bases) that are disjoint and cannot be fully integrated for
a variety of reasons (separate engineering domains, outsourcing, confidentiality, etc.).
Thus, the collaboration between risk analyst and requirement analyst in such processes

is sometimes difficult, especially when a change occurs and they have to interact to keep
the risk and the requirement models mutually consistent under change.

This paper proposes an alternative solution to change propagation that is not based
on the integration of requirement engineering and risk assessment in a unique method-
ology, but on the orchestration of the two. The orchestration relies upon mappings be-
tween key concepts of the requirement and the risk conceptual models. The requirement
engineering process and the risk analysis process are orchestrated when a change is ap-
plied to model elements that are instances of the mapped concepts. Orchestration has
several advantages with respect to integration. The first one is that orchestration sup-
ports separation of concern: the requirement analyst and the risk analyst do not need to
have in-depth expertise in the respective domains, they only need to know the mapped
concepts on which the orchestration is based. The second advantage is that the orches-
tration ensures consistency between the requirement and the risk models and that neither
of them becomes obsolete with respect to the other under change.

We have expressed the mappings between concepts of requirement and risk con-
ceptual models as VIATRA2 [29] graph transformation rules. VIATRA2 ensures the
automatic creation of traceability links between requirement and risk models and the
automatic execution of the mappings when a change affects a mapped concept.

To illustrate the change-driven interplay between requirement engineering and risk
assessment, we will focus on the ongoing evolution of ATM systems as planned by
the ATM 2000+ Strategic Agenda [9] and the SESAR Initiative.3 The current evolu-
tion of ATM systems provides us concrete examples of changes in the requirements
domain that have an impact on the risk domain and vice versa. As part of the ATM sys-
tem’s evolution, we consider the introduction of a new surveillance tool, the Automatic
Dependent Surveillance-Broadcasting (ADS-B). ADS-B provides accurate aircraft po-
sition information by using a global navigation satellite system. If on one side ADS-B is
beneficial for ATM, on the other side it makes ATM systems vulnerable to new threats.
In fact, ADS-B transmissions can be easily corrupted: a concrete example is the spoof-
ing of the GPS satellite that provides the GPS signal to determine aircraft position.

The structure of the paper is as follows. In Section 2, we give an overview of SI* [2,
10,22] and of CORAS [21] as examples of instantiations of the requirement and the risk
domains, respectively. In Section 3 we define the conceptual mappings that are the basis
for the change-driven interplay. In Section 4, the change-driven interplay is presented
and illustrated with concrete examples. We conclude the paper with the related works
in Section 5 and outlining future work in Section 6.

2 Background

For sake of concreteness, we instantiate the requirement framework to SI* and the risk
framework to CORAS. However, our approach is independent from the specific require-
ment and risk frameworks that are adopted, and can thus be applied to other competing
instantiations if these have concepts similar to the ones we propose in Section 3.

3 http://www.sesarju.eu/

http://www.sesarju.eu/

Actor Dependency
Depender

Dependee

1 *

Service

Dependum

1

1

ResourceTaskGoal

1..*

*

1 *
1

2..*

Decomposition

Request

Soft

Goal

* *

Means-end Means-end

* *

* *

Require

Protects

1

*

Fig. 1. SI* conceptual model

2.1 SI* Framework

SI* is a modeling framework extending the i* framework [30] to support security re-
quirement analysis. SI* aims at analyzing and modeling organizational settings and its
security and dependability requirements. The main concepts of the SI* language4 are
represented in Figure 1: an actor is an entity which has intentions, capabilities, and enti-
tlements; a goal captures a strategic interest that actor intends to see fulfilled; a soft goal
captures a non-functional requirement; a resource is an artifact produced/consumed by
a goal; AND/OR decomposition is used to refine a goal; means-end identifies goals
that provide means for achieving another goal or resources produced or consumed by
a goal/task. SI* also captures social relationships (e.g., delegation and trust) for defin-
ing the entitlements, capabilities and objectives of actors. A delegation marks a formal
passage of responsibility (delegation execution) or authority (delegation permission)
from an actor (delegator) to the actor receiving the responsibility/authority (delegatee)
to achieve a goal or to provide a resource. Trust is a relation between two actors repre-
senting the expectation of one actor (trustor) about the capabilities of the other (trustee)
– trust execution, and about the behavior of the trustee with respect to the given permis-
sion – trust permission.

To specify security needs which identify assets that have to be protected by prevent-
ing loss of confidentiality, integrity, availability, authenticity or accountability, we use
the concept of soft goal and we introduce a new relation protects between a soft goal
and a service – a resource, task or goal – to denote that the service is an asset.

The requirement analysis supported by SI* is an iterative process that aims at refin-
ing the actors’ goals until all high-level goals are achieved. We consider the requirement
analysis proposed in [2] where the keyword SAT denotes that the evidence is in favor of
the achievement of a goal, and DEN to denote that the evidence is against it. The results
of the analysis are captured by a SI* model that illustrates the detailed goals that serve
stakeholders’ needs, how they are achieved, the necessary resources, and the security
goals that protect the system.

Example 1. Figure 2 (a) shows an example of SI* model that describes some actors
involved in aircrafts arrival procedures. There are four main actors: the Tactical Con-
troller (TC), the FDPS (flight data processing system), the RDPS (radar data processing
system), and the Radar. The TC has a main goal, namely Monitor air traffic which needs

4 We only mention the concepts that are relevant to this work

Component

failure

Radar

RDPS crashes

[possible]

Loss of radar

signal in MRT

Failure of A/C

tracking

[likely]

Failure in

provisioning

of surveillance

data

[possible] Availability of

surveillance

data

Run fault

tolerant MRT

Unreliable

RDPS

Insufficient

radar

maintenance

m
in
or

Surveillance

data

RDPS

FDPS Radar

Manage radar

signal

Gather aircraft

position

Manage

surveillance

data

Surveillance

data

AND

Run fault

tolerant

MRT

Availability of

radar signal

+

De

Observe air

situation display

Monitor air

traffic

Flight

data

Tactical

controller
R

De

De

(a) (b)

Fig. 2. SI* and CORAS models examples

surveillance data to be fulfilled. The provision of Surveillance data is delegated to the
RDPS. The RDPS is concerned about the availability of the radar signal as expressed
by the soft goal Availability of radar signal since the radar signal is crucial for the com-
putation of aircrafts’ arrival sequence.

2.2 CORAS

Risk management may be referred to as activities to direct and control an organization
with regard to risk. CORAS is a model-driven approach to risk management that is
based on the ISO 31000 standard for risk management [13], and offers a method for
risk analysis. The CORAS risk analysis method is supported by the CORAS language,
that serves as the basis for building different kinds of diagrams for risk modeling and
analysis. The method and language are firmly based on a set of well-defined risk related
concepts. The most important of these, as well as the relationships between them, are
shown in the UML class diagram of Figure 3.

An unwanted incident is an event that harms or reduces the value of an asset, where
an asset is something to which a party assigns value and hence for which the party re-
quires protection. A party is a stakeholder, i.e. an organization, company, person, group
or other body, on whose behalf a risk analysis is conducted. A risk is the likelihood of
an unwanted incident and its consequence for a specific asset, where the likelihood is
the frequency or probability for something to occur and the consequence is the impact
of an unwanted incident on an asset in terms of harm or reduced asset value. A threat
is the potential cause of an unwanted incident, whereas a threat scenario is a chain or
series of events that is initiated by a threat and that may lead to an unwanted incident.
A vulnerability is a weakness, flaw or deficiency that opens for, or may be exploited
by, a threat to cause harm to or reduce the value of an asset. Finally, a treatment is an
appropriate measure to reduce risk level.

Example 2. The CORAS threat diagram of Figure 2 (b) documents a risk with respect
to the asset Availability of surveillance data. The provisioning of surveillance data partly
relies on the radar data processing system (RDPS) and aircraft (A/C) tracking by radar,
and failure in any of the two may lead to loss of availability.

Leads to

* 1..*

Party

Consequence

Asset

Risk

Likelihood

Unwanted

incident

Treatment
Threat

scenario
Threat

Vulnerability

*

*

Initiates

Exploits
1..*

*

1

1

1

*
1..* 1

1..*

*

1 1

1 1..*

Fig. 3. CORAS conceptual model

The CORAS risk analysis consists of five main phases. The context establishment
includes defining the target of analysis, setting the scope and focus of the analysis,
and deciding the risk evaluation criteria. The risk identification is to identify, model and
document risks, including the various sources of risk such as threats, vulnerabilities and
unwanted incidents. The risk estimation is to determine the risk levels by estimating the
consequences of unwanted incidents and their likelihood to occur. The risk evaluation is
to compare the risk estimation results with the risk evaluation criteria and decide which
risks need to be evaluated for treatment. The risk treatment is to identify strategies for
mitigating risk, reducing them to an acceptable level. The process is typically iterative
and aims at protecting stakeholders’ assets, and terminates when the residual risk is
equal to or lower than the risk tolerance.

3 Conceptual Mappings

SI* and CORAS models are rarely static as they may continuously evolve during their
respective processes. Evolution is driven by user input in modeling environments and
editors. Two types of changes can be applied to a model: atomic changes which are
model updates consisting of an operation – e.g create, delete, update – and operands
(model elements), or a complex sequence of such atomic operations. Thus, a change in
a SI* or CORAS model can be represented as a transition of the model from a pre-state,
to a post-state. The difference between the pre-state and the post-state model is called
change delta (or model delta). Model manipulation operations are specified in a change
request that can be proposed either by the requirement or the risk analyst.

Since SI* and CORAS conceptual models evolve independently, inconsistencies be-
tween the two models can be identified only when a periodic review is conducted. Thus,
to ensure bidirectional consistency, i.e. maintain mutual consistency under change, we
propose a change-driven interplay between the requirement analyst and the risk ana-
lyst. The interplay is based on a set of mappings between key concepts of the SI* and
CORAS conceptual models. We have mapped concepts that are used to represent assets
that are critical for the achievement of organization’s strategic objectives and means to
protect assets in a cost-effective manner. We have identified three conceptual mappings:
ServiceToAsset, ServiceToTreatment, and TreatmentToTask.

ServiceToAsset. A service that is linked to a soft goal by a protects relation denotes
a resource, a task or a goal that is of value for the organization and thus needs to be

protected from harm. Since in CORAS, an asset is something of value that requires
protection, we map a service protected by a soft goal in SI* to an asset in CORAS.

ServiceToTreatment. A service which is related to another service mapped to an asset
in a CORAS model, can be mapped to a treatment if the service reduces the likelihood
or the consequence of a threat scenario damaging the asset.

TreatmentToTask. A treatment is a security control that should reduce the likelihood
or consequence of a threat to an asset which results in a loss of confidentiality, avail-
ability, or integrity. Thus, if a treatment is implemented, the confidentiality, integrity or
availability of an asset is protected. A treatment in CORAS can therefore be mapped
to a task which fulfills the soft goal which specifies the security property that has to be
preserved for an asset.

We have formalized the mappings in the VIATRA2 graph transformation language
[29]. The VIATRA2 framework supports model-to-model transformations: a model
transformation is a program that receives as input a source model that conforms to its
source metamodel and produces a target model conforming to a target metamodel. The
VIATRA2 transformation language consists of several constructs: graph patterns are
declarative queries, that specifies constraints and conditions on models; graph transfor-
mations rules (GT) provide a declarative, high-level rule- and pattern-based manipula-
tion language for models; abstract state machine (ASM) rules can be used to assemble
patterns and graph transformation rules to specify complex model transformations. A
graph transformation rule can be specified by using a left-hand side – LHS (or pre-
condition) pattern determining the applicability of the rule, and a right-hand side –
RHS (postcondition) pattern which specifies how the model should be changed at the
matches of the LHS.

The mappings ServiceToAsset, ServiceToTreatment, and TreatmentToTask are
formalized by the graph transformation rules newAsset, potentialTreatment, and trans-
formTreatment respectively. The rules are executed on a model space which includes
a) SI* conceptual model, b) CORAS conceptual model, c) a SI* model, d) a CORAS
model. The model space includes also the traceability conceptual model which specifies
the structure of the traceability matrix and the traceability model storing the mappings
between the elements of the CORAS and the SI* models. The traceability links are
automatically created by the graph transformation rules.

The newAsset rule has three parameters: SecGoal, the soft goal that has to be
mapped, CModel, the CORAS model, and TraceModel, the traceability model that
stores the mappings between the elements of the SI* and CORAS model. The precon-
dition calls two patterns: secgoalProtectsAsset which checks that SecGoal is
a soft goal that is linked to a service by the ”protects” relation; the negative condition
pattern mappedElement which checks that soft goal SecGoal has not already been
mapped to an asset in the CORAS model CModel. The postcondtion creates an asset
Asset in the CORAS model CModel. The action of the rule names the asset Asset
created in CModel as SecGoal and creates a traceability link in the traceability model
who has as source of the mapping SecGoal and as target Asset.

g t r u l e newAsset (o u t SecGoal , o u t CModel , o u t TraceModel) ={
p r e c o n d i t i o n p a t t e r n u n m a p p e d s e c u r i t y G o a l (SecGoal ,

SecGoalName , AssetName) ={
f i n d s e c g o a l P r o t e c t s A s s e t (SecGoal , SecGoalName ,

AssetName) ;
neg f i n d mappedElement (SecGoal , TraceModel , Source ,

T a r g e t) ;
}
p o s t c o n d i t i o n p a t t e r n mappedAsset (Asse t , CModel) ={

A s s e t (A s s e t) i n CModel ;
CDiagram . e n t i t i e s (Rel , CModel , A s s e t) ;

}
a c t i o n {

c a l l copyName (SecGoal , A s s e t) ;
c a l l c r e a t e L i n k (SecGoal , Asse t , TraceModel) ;

}
}

Listing 1.1. Mapping Soft Goal to an Asset

g t r u l e p o t e n t i a l T r e a t m e n t (o u t S e r v i c e , o u t CModel , o u t
TraceModel) = {

p r e c o n d i t i o n p a t t e r n unmappedTreatment (S e r v i c e , SecGoal ,
A s s e t) = {

f i n d s e c g o a l P r o t e c t s A s s e t (SecGoal , SecGoalName ,
AssetName) ;

f i n d S e r v i c e T o A s s e t (S e r v i c e , SecGoal , A s s e t) ;
neg f i n d mappedElement (S e r v i c e , TraceModel , Source ,

T a r g e t) ;
}
p o s t c o n d i t i o n p a t t e r n n e w P o t e n t i a l T r e a t m e n t (SecGoal ,

Asse t , TraceModel) = {
f i n d mappedAsset (Asse t , TraceModel) ;
}

a c t i o n {
p r i n t l n (name (S e r v i c e) + ” i s a p o t e n t i a l t r e a t m e n t

f o r A s s e t ”+ name (A s s e t)) ;
}

}

Listing 1.2. Mapping a new Service to a Potential Treatment

The potentialTreatment rule has three parameters: Service, the service that has to
be mapped, CModel, the CORAS model, and TraceModel, the traceability model.
The precondition calls three patterns: secgoalProtectsAsset which looks for a
a soft goal SecGoal that ”protects” a service Asset; ServiceToAsset checks
if the service Service is related to the service Asset protected by the soft goal
SecGoal; the negative condition pattern mappedElement which checks that the
service Service has not already been mapped to a treatment in the CORAS Model

CModel. The postcondtion checks the asset in the CORAS model CModel that is
mapped to the service Asset protected by the soft goal SecGoal. The action presents
Services as a potential treatment for asset Asset.

g t r u l e t r a n s f o r m T r e a t m e n t (o u t Trea tment , o u t ReqModel , o u t
TraceModel) ={

p r e c o n d i t i o n p a t t e r n unmappedTreatment (Trea tmen t , A s s e t)
={
f i n d harmedAsse t (Trea tmen t , T h r e a t S c e n a r i o , A s s e t) ;
neg f i n d mappedElement (Trea tmen t , TraceModel , Source ,

T a r g e t) ;
}

p o s t c o n d i t i o n p a t t e r n newTask (Asse t , Task , ReqModel ,
TraceModel) ={
f i n d s i s t a r m o d e l (ReqModel) ;

f i n d t a s k (Task) ;
f i n d mappedSecGoal (Asse t , SecGoal) ;
f i n d meansEnd (R , Task , TaskName , SecGoal ,

SecGoalName) ;
}

a c t i o n {
c a l l copyName (Trea tmen t , Task) ;
c a l l c r e a t e L i n k (Trea tment , Task , TraceModel) ;

}
}

Listing 1.3. Mapping Treatment to Task fulfilling a Soft Goal

The transformTreatment rule has three parameters: Treatment, the treatment to be
mapped, ReqModel, the SI* model, and TraceModel, the traceability model. The
precondition specifies two constraints for Treatment: harmedAsset identifies the
asset Asset that is harmed by the threat scenario ThreatScenario treated by
Treatment; the negative condition pattern mappedElement checks that Treatment
has not already been mapped to a task in the SI * model. The postcondtion creates a
task Task in the SI* model ReqModel and links it by means of a means-end relation
to the soft goal SecGoal that protects the service mapped to Asset. The action of the
rule names the asset Task created in ReqModel as the treatment Treatment and
creates a traceability link in the traceability model who has as source element of the
mapping Treatment and as target Task.

4 Change-driven interplay between risk and requirement analysts

The interaction between the risk analyst and requirement analyst is triggered when a
change is applied to model elements that are instances of the mapped concepts in SI*
and CORAS conceptual models. In the following we present three bidirectional propa-
gation scenarios where changes are propagated from the requirement models to the risk
model and vice versa. These are examples of possible scenarios that are supported by
the conceptual mappings.

Component

failure

Radar

RDPS crashes

[possible]

Loss of radar signal

in MRT

Failure of A/C

tracking

[possible]

Failure in

provisioning of

surveillance

data

[possible] Availability of

surveillance

data

Run fault tolerant

MRT

Unreliable

RDPS

Insufficient

radar

maintenance

minor

RDPS

Radar Manage

radar signal

Gather aircraft

position

Manage

surveillance

data

Surveillance

data

AND

ADS-B

Loss of ADS-B

signal

ADS-B

unreliable Manage

ADS-B signal

ADS-B

Manage

ADS-B signal

De

Attacker

Spoofing of

ADS-B signal

[rare]

Degradation

of A/C

position data

[unlikely] Integrity of

ADS-B signal
Lack of

integrity

mechanisms Apply MD5

checksum

major

Run fault

tolerant

MRT

Apply MD5

checksum

ADS-B

signal

Radar

signal

AND

Availability of

radar signal

Availability of

ADS-B signal

+ +

Availability of

surveillance

data

AND

Integrity of

ADS-B signal

+

ADS-B

signal

De

Fig. 4. Change-driven interplay

ServiceToAsset-TreatmentToTask. When a new soft goal and a protected service are
added to the requirement model, a new asset is created in the risk model as specified by
the graph transformation rule newAsset (see Listing 1.1). Hence, the requirement ana-
lyst passes the new soft goal and the service protected by the goal to the risk analyst.
The risk analyst, then, decides if it is the soft goal, the service or both that are mapped
to an asset in the risk model. When the asset is added, the risk analyst identifies possible
threat scenarios and estimates the associated risks for the asset. If the level of the iden-
tified risks is not acceptable, the risk analyst has to select a set of treatments that reduce
the risks to an acceptable level. The identified treatments have to be proposed to the
requirement analyst who decides whether to implement them or not based on cost/ben-
efit analysis. Thus, the graph transformation rule transformTreatment (see Listing 1.3)
is applied to the SI* model, and thus new tasks representing the treatment proposed by
the risk analyst is added to the requirement model. The task is linked by a means-end re-
lation to the soft goal and the protected service mapped to the asset which is threatened
by the risk mitigated by the treatment. The tasks that correspond to treatments that the
requirement analyst decided not to implement, are deleted from the requirement model.
Then, the requirement analyst has to return the list of the treatments selected for im-
plementation to the risk analyst. Then, the risk analyst can remove the threat scenarios
mitigated by the treatments from the assumptions on which the risk estimates have been
calculated.

Example 3. To illustrate the scenario above, we consider as prestate models the SI* and
CORAS models illustrated in Figure 2. The change we consider first is the introduction
of a new actor, the ADS-B, which is intended to increase the accuracy and availability
of the surveillance data. The changes that are handled are highlighted in gray in Fig-
ure 4. The ADS-B introduction requires the addition of the goal Manage ADS-B signal
and the resource ADS-B signal. Moreover, since the integrity of the ADS-B signal is
critical, this security need is specified by introducing a new soft goal Integrity of ADS-B
signal. Notice also that because ADS-B signal becomes part of the surveillance data,
the soft goal Availability of surveillance data is decomposed into the subgoals Availability

of ADS-B signal and Availability of Radar signal. The introduction of the ADS-B actor
may affect the risks due to the introduction of the new soft goals. In particular, the soft
goal Integrity of ADS-B signal is mapped to a corresponding asset in the CORAS model
for which a risk assessment is conducted. As ADS-B is prone to data spoofing, this
issue is addressed and identified as an unacceptable risk with respect to integrity. The
treatment Apply MD5 checksum is considered, and leads to the addition of a new task
Apply MD5 Checksum fulfilling the soft goal Integrity of ADS-B signal in the SI* model.
The new soft goal Availability of ADS-B signal is also mapped to the CORAS model as
a new aspect of the more general asset Availability of surveillance data. The risk analyst
decides not to decompose this asset with respect to ADS-B and radar when assessing
the impact of the ADS-B. A new threat scenario Loss of ADS-B signal is identified, but
the overall risks with respect to availability of surveillance data do not increase; rather,
the likelihood of the threat scenario Failure of A/C tracking decreases from likely (cf.
Figure 2 (b)) to possible.

ServiceToTreatment-TreatmentToTask. The interaction between the requirement an-
alyst and the risk analyst can also be triggered when a new service is added to the re-
quirement model. If the service is related to another service which is mapped to an asset
in the risk model, and the former service reduces the likelihood or the consequence of
a threat scenario damaging the asset, the service can be considered as a potential treat-
ment. By a service related to an asset we mean a goal or a task that consumes the asset
or a resource that is part of the asset. The execution of the graph transformation rule
potentialTreatment (see Listing 1.2) is triggered and, thus, a potential treatment is sug-
gested to the risk analyst, who evaluates which is the impact of it on the risk profile. The
introduction of the treatment might not reduce sufficiently the risk associated with the
mitigated threat scenario, and thus the risk analyst decides to not update the risk model
with the new treatment; or it can lead to the removal of another treatment because the
new treatment reduces the level of risk of a threat scenario which was mitigated by the
treatment. In this case, the requirement analyst needs to be informed about the removal
of a treatment because it has to remove from the requirement model the task that is
mapped to the treatment.

Example 4. The ADS-B introduction increases the availability of surveillance data.
Thus, the likelihood of the threat scenario Failure of A/C tracking in the CORAS model
is reduced. Consequently, the risk analyst determines that the treatment Run fault toler-
ant MRT is no longer needed and therefore removes it from the CORAS model. This
treatment is mapped to the corresponding task in the requirement model since it protects
the soft goal Availability of radar data, and hence the more general soft goal Availabil-
ity of surveillance data. Therefore, the removal of treatment Run fault tolerant MRT in
the CORAS model leads to the removal of the mapped task Run fault tolerant MRT. In
Figure 4 the removal of elements is indicated by the diagonally striped elements.

TreatmentToTask. The interaction between the risk analyst and the requirement an-
alyst is also required when the likelihood or the consequence scale changes or new
threats emerge. For example, when a new security incident is reported, the risk analyst
has to consider new threat scenarios for the damaged asset, and evaluate the risk asso-
ciated with them. If the level of risk associated with the new threat scenarios is high,

the risk analyst identifies treatments that aim to reduce the risk to an acceptable level.
The requirement analyst has to be notified about the new treatments, so that he/she can
decide whether to implement the treatments or not. If the treatments provide sufficient
risk reduction and are cost effective, the requirement analyst updates the requirement
model with new tasks linked to the soft goal protecting the asset harmed by the threat
mitigated by the treatments.

Example 5. Due to space constraints we do not show the modeling of this example,
which in any case should be straightforward. A risk assessment is conducted that iden-
tifies the new threat scenario Eavesdropping on ADS-B communication. The risk of
leakage of critical A/C position data due to ADS-B eavesdropping is considered as
very unlikely since this kind of data is not sensitive, but the consequence of leakage
of critical data is considered as a major consequence. The resulting risk level is there-
fore unacceptable. The treatment Implement encryption of ADS-B signal is identified
for the threat scenario Eavesdropping on ADS-B communication. The addition of the
treatment Implement encryption of ADS-B signal leads to the addition of a) a new soft
goal Confidentiality of ADS-B signal which protects the resource ADS-B signal, b) a
task Encryption of ADS-B signal which contributes to the fulfillment of the soft goal
Confidentiality of ADS-B signal.

With these examples we see how the change-driven interplay works in practice. It
supports the underlying idea of separation of concern between the two domains where
the respective processes are conducted separately, yet sufficiently orchestrated to man-
age the changes in a coherent way. Moreover, the interplay ensures that consistency is
maintained between the two domains and that none of the models become obsolete with
respect to the other under change.

5 Related Work

The approach presented in this paper is related to works that have investigated the prob-
lems of orchestrating the requirement elicitation and analysis process with risk assess-
ment process, and to works on how to handle change propagation.

Requirements and Risk Analysis Interplay. Several requirement frameworks have
attempted to extend requirements conceptual models with security related concepts and
to include risk analysis as part of the requirement analysis. Among goal-oriented ap-
proaches, van Lamsweerde extends KAOS by introducing the notions of obstacle [28]
and anti-goal [15] to analyze the security concerns of a system. KAOS obstacle captures
an undesired state of affairs that might harm safety goals (i.e., hazard) or threaten secu-
rity goals (i.e., threat). KAOS anti-goal captures the intention of an attacker or considers
it as a malicious obstacle. A formal framework is proposed to identify the obstacles to
a goal in a given domain properties and to generate countermeasures to those obstacles.
Liu et al. [18] proposes an extension of the i* framework [30] to identify attackers, and
analyze vulnerabilities through actor’s dependency links. In this framework, all actors
are considered as potential attackers, and therefore their capabilities are analyzed and
possible damages caused by actors are assessed. In Li et al. [16], the authors propose
a formal framework to support the attacker analysis. Similarly, Elahi et al. [8] propose

extensions to i* to model and analyze the vulnerabilities affecting system requirements.
Mayer et al. [24] propose a conceptual model for managing security of an informa-
tion system based on several security methods (e.g., CORAS, ISO 27001). Asnar et
al. [2] propose a concrete methodology, namely the Goal-Risk framework to analyze
and model security problems. GR frameworks captures the stakeholders’ goals, risks
that might threaten the goals, and countermeasures required to mitigate the unaccept-
able the risk.

Compared to these approaches, the work presented in this paper proposes an inter-
play between requirement engineering process and risk assessment process that is based
on orchestration rather than on integration of the two processes. Orchestration has has
several advantages with respect to integration. The first one is that the requirement
analyst and the risk analyst do not need to have in-depth expertise in the respective do-
mains: they just need to know the mapped concepts on which the orchestration is based.
Another key aspect of our approach is that the requirement and risk model are synchro-
nized not on the basis of a periodic review but as soon a change is applied to the models.
Thus, the orchestrated process ensures bidirectional consistency of requirement and the
risk models.

Change propagation. Chechik et al. [4] propose a model-based approach to propa-
gate changes between requirements and design models that utilize the relationship be-
tween the models to automatically propagate changes. Lin et al. [17] propose capturing
requirement changes as a series of atomic changes in specifications and using algo-
rithms to relate changes in requirements to corresponding changes in specifications.

With respect to change management for risk, the ISO 31000 standard [13] pre-
scribes that change detection and identification for emerging risks should be conducted
as part of the overall risk management process, but gives no specific guidelines on how
to do this in practice. The well-known OCTAVE [1] risk assessment methodology rec-
ommends reviewing risks and critical assets, but offers no techniques or modeling for
supporting the update of the risk assessment results. The approaches of Sherer [26] and
Lund et al. [20] provide some support for maintenance of risk assessment results in the
sense of restoring validity of risk documentation after changes, but change propagation
and change impact analysis are not explicitly supported.

Other works relevant to change propagation are the one about the generation and
maintenance of traceability links, and model-to-model transformations. Most of the
works on the maintenance of traceability matrix focus on the recovery of traceability
links between requirements and artifacts of different types e.g. code [6, 7, 14, 19], as in
many cases these links are not explicitly represented; and on methods and CASE tools
for the representation and management [5, 11, 12, 14] of traceability links.

Model-to-model transformation techniques such as VIATRA2 [29], QVT [27], and
ATLAS [3] support change propagation by means of bidirectional incremental model
synchronization.

In this paper we rely on VIATRA2 transformation framework to represent as graph
transformation rules the mappings between concepts of SI* and CORAS. VIATRA2
ensures the automatic creation of traceability links between CORAS and SI* models
and the execution of the mappings when a change affects a mapped concept.

6 Conclusions

In this paper we have presented an approach for handling change propagation and an-
alyzing the mutual impact between the requirement engineering and risk analysis do-
mains. Change propagation is based on conceptual mappings between the two domains
and a set of well-defined mapping rules that handle the change propagation at the model
level.

An important advantage of the approach is separation of concerns. Enforcing this
principle has the advantage that the respective processes can leverage on each other
while being conducted separately, and that the risk analysts do not need thorough exper-
tise in the requirement domain or the requirement modeling language, and vice versa.
They only need to have a high-level understanding of the mapped concepts. The change-
driven interplay is supported by the formalization of the mappings as VIATRA2 graph
transformation rules. The execution of the rules ensures the preservation of model con-
sistency between the two domains under change.

In this paper the approach has been applied to the SI* requirement framework and
the CORAS risk framework, although it is applicable also to alternative (competing) in-
stantiations. Indeed, the concepts that are mapped in the former – such as goal, resource,
and task – are in common to other goal-oriented approaches to requirement engineer-
ing. The same holds for asset and treatments that are key concepts in other risk analysis
approaches. Thus, the validity of our approach goes beyond the demonstrated instantia-
tions in this paper; alternative approaches to requirement engineering and risk analysis
with similar underlying conceptual frameworks can be orchestrated by following the
same approach.

In risk analysis, one of the objectives is to identify and document treatments the
implementation of which ensures that the residual risk level is within the acceptable
threshold, whereas requirements engineering aims at achieving the identified goals to an
acceptable level. Thus, as future work, we plan to extend the framework with mapping
rules for relating the residual risk level with the achievement level such that propaga-
tions are triggered also by changes to these. We moreover plan to extend the framework
in order to handle more complex changes than the atomic ones. A further topic for
future work is the definition of methods to handle conflicting changes such as a new
requirement contradicting existing treatments.

Acknowledgments. This work has been partially supported by the European Commis-
sion under the 7th Framework Programme via the SecureChange (231101) project and
the NESSoS (256980) network of excellence.

References

1. Alberts, C.J., Davey, J.: OCTAVE criteria version 2.0. Technical report CMU/SEI-2001-TR-
016, Carnegie Mellon University (2004)

2. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements engi-
neering. Requirements Engineering 16(2), 101–116 (2011)

3. Bzivin, J., Dup, G., Jouault, F., Pitette, G., Rougui, J.E.: First experiments with the ATL
model transformation language: Transforming XSLT into XQuery. In: 2nd OOPSLA Work-
shop on Generative Techniques in the context of Model Driven Architecture (2003)

4. Chechik, M., Lai, W., Nejati, S., Cabot, J., Diskin, Z., Easterbrook, S., Sabetzadeh, M., Salay,
R.: Relationship-based change propagation: A case study. In: Proceedings of the 2009 ICSE
Workshop on Modeling in Software Engineering. pp. 7–12. MISE’09, IEEE Computer So-
ciety, Washington, DC, USA (2009)

5. Cleland-Huang, J., Settimi, R., BenKhadra, O., Berezhanskaya, E., Christina, S.: Goal-
centric traceability for managing non-functional requirements. In: Proceedings of the 27th
International Conference on Software Engineering. pp. 362–371. ICSE ’05, ACM, New
York, NY, USA (2005)

6. Natt och Dag, J., Regnell, B., Carlshamre, P., Andersson, M., Karlsson, J.: A feasibility study
of automated natural language requirements analysis in market-driven development. Requir.
Eng. 7(1), 20–33 (2002)

7. Egyed, A., Grünbacher, P.: Automating requirements traceability: Beyond the record & re-
play paradigm. In: ASE. pp. 163–171 (2002)

8. Elahi, G., Yu, E., Zannone, N.: A vulnerability-centric requirements engineering framework:
analyzing security attacks, countermeasures, and requirements based on vulnerabilities. Re-
quirements Engineering 15(1), 41–62 (2009)

9. EUROCONTROL: ATM Strategy for the Years 2000+ (2003)
10. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements engineering for trust

management: model, methodology, and reasoning. International Journal of Information Se-
curity 5(4), 257–274 (2006)

11. Hayes, J.H., Dekhtyar, A., Sundaram, S.K.: Advancing candidate link generation for require-
ments tracing: The study of methods. IEEE Trans. Softw. Eng. 32, 4–19 (January 2006)

12. IBM Rational DOORS, http://www-01.ibm.com/software/awdtools/doors/features/
13. ISO: ISO 31000 Risk management – Principles and guidelines (2009)
14. von Knethen, A., Grund, M.: Quatrace: A tool environment for (semi-) automatic impact

analysis based on traces. In: ICSM. pp. 246–255 (2003)
15. Lamsweerde, A.V.: Elaborating security requirements by construction of intentional anti-

models. In: Software Engineering, 2004. ICSE 2004. Proceedings. 26th International Con-
ference on. pp. 148–157 (2004)

16. Li, T., Liu, L., Bryant, B.R.: Service Security Analysis Based on i*: An Approach from
the Attacker Viewpoint. In: Security, Trust, and Privacy for Software Applications (STPSA
2010). pp. 127–133. Seoul (2010)

17. Lin, L., Prowell, S.J., Poore, J.H.: The impact of requirements changes on specifications and
state machines. Softw. Pract. Exper. 39, 573–610 (2009)

18. Liu, L., Yu, E., Mylopoulos, J.: Security and privacy requirements analysis within a social
setting. Proc.of RE 3, 151–161 (2003)

19. Lucia, A.D., Fasano, F., Oliveto, R., Tortora, G.: Recovering traceability links in software
artifact management systems using information retrieval methods. ACM Trans. Softw. Eng.
Methodol. 16 (2007)

20. Lund, M.S., den Braber, F., Stølen, K.: Maintaining results from security assessments. In:
7th European Conference on Software Maintenance and Reengineering. pp. 341–350. IEEE
Computer Society (2003)

21. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis - The CORAS Approach.
Springer Berlin Heidelberg, Berlin, Heidelberg (2011)

22. Massacci, F., Mylopoulos, J., Zannone, N.: Security Requirements Engineering : The SI*
Modeling Language and the Secure Tropos Methodology. In: Ras, Z., Tsay, L.S. (eds.) Ad-
vances in Intelligent Information Systems, Studies in Computational Intelligence, vol. 265,
pp. 147–174. Springer Berlin / Heidelberg (2010)

23. Matulevicius, R., Mayer, N., Mouratidis, H., Dubois, E., Heymans, P., Genon, N.: Adapt-
ing Secure Tropos for security risk management in the early phases of information systems
development. In: Advanced Information Systems Engineering, Lecture Notes in Computer
Science, vol. 5074, pp. 541–555. Springer Berlin / Heidelberg (2008)

24. Mayer, N., Heymans, P., Matulevicius, R.: Design of a modelling language for information
system security risk management. In: Proceedings of the 1st International Conference on
Research Challenges in Information Science (RCIS 2007). pp. 121–131 (2007)

25. Røstad, L.: An extended misuse case notation: Including vulnerabilities and the insider
threat. In: The Twelfth Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ’06) (2006)

26. Sherer, S.A.: Using risk analysis to manage software maintenance. J. Softw. Maint.: Res.
Pract. 9(6), 345–364 (1997)

27. Stevens, P.: Bidirectional model transformations in QVT: Semantic issues and open ques-
tions. In: MoDELS. pp. 1–15 (2007)

28. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. IEEE Transactions on Software Engineering 26(10), 978–1005 (2000)

29. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming 68(3), 214–234 (2007)

30. Yu, E.: Modelling strategic relationships for process reengineering. Ph.D. thesis, University
of Toronto, Canada (1995)

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 58/136

APPENDIX C

Risk and Argument: A Risk-based
Argumentation Method for Practical Security
Virginia N. L. Franqueira∗, Thein Than Tun†, Yijun Yu†, Roel Wieringa∗ and Bashar Nuseibeh†‡

∗ University of Twente, Enschede, The Netherlands
Email: {franqueirav, r.j.wieringa}@ewi.utwente.nl
† The Open University, Milton Keynes, UK

Email: {t.t.tun, y.yu, b.nuseibeh}@open.ac.uk
‡ Lero, Irish Software Engineering Research Centre, Limerick, Ireland

Email: bashar.nuseibeh@lero.ie

Abstract—When showing that a software system meets certain
security requirements, it is often necessary to work with formal
and informal descriptions of the system behavior, vulnerabilities,
and threats from potential attackers. In earlier work, Haley
et al. [1] showed structured argumentation could deal with
such mixed descriptions. However, incomplete and uncertain
information, and limited resources force practitioners to settle for
good-enough security. To deal with these conditions of practice,
we extend the method of Haley et al. with risk assessment.
The proposed method, RISA (RIsk assessment in Security Argu-
mentation), uses public catalogs of security expertise to support
the risk assessment, and to guide the security argumentation in
identifying rebuttals and mitigations for security requirements
satisfaction. We illustrate RISA with a realistic example of PIN
Entry Device.

Index Terms—Security Requirements, Argumentation, Risk
Assessment, Common Attack Pattern Enumeration and Classifi-
cation (CAPEC), Common Weakness Enumeration (CWE)

I. INTRODUCTION

Structures of argumentation, such as those proposed by
Toulmin et al. [2], provide an effective way to organize knowl-
edge when convincing an audience about a claim. They have
been used in many ways including to build safety cases [3],
to demonstrate compliance to laws and regulations [4], and
to show security requirements satisfaction [1]. Depending
on the nature of the claim, arguments can be built upon
observable and measurable evidence, such as the frequency
of system failures, defects detected by code analysis tools
and developers’ certification records. Engineering of secure
systems has many practical limitations, including incomplete
knowledge about potential attackers, uncertainties about the
system context, limited resources and different trade-off agen-
das. All in all, security is a non-zero-sum game between
defenders and attackers of a system. Absolute security is
usually not feasible, if at all possible. Argumentation works
well in conditions of complete information and sufficient
resources, but when one of these is lacking, it needs to
be supplemented with risk assessment techniques that allow
for uncertainty and incompleteness of available evidence,
and allow partial application when resources are limited. It
facilitates the achievement of practical security: “good-enough
satisfaction” of security requirements within an “as low as
reasonably practicable” [5] level of risk.

Haley et al. [1] have already suggested, but not elaborated,
the need to relate argumentation and risk assessment for
security. Extending that work, we present the RISA (RIsk-
based Security Argumentation) method, which takes advantage
of public catalogs of security expertise and empirical evidence,
in particular, the CAPEC (Common Attack Pattern Enumer-
ation and Classification), and the CWE (Common Weakness
Enumeration) catalogs. The aims of RISA are to:

1) identify the risks to the satisfaction of security require-
ments;

2) differentiate between the risks that should be mitigated
by the system context and the risks that should be
mitigated by the system;

3) analyze those risks to be mitigated by the system and
prioritize the risks found through arguments.

The main contribution of this paper is a systematic approach
to assessing the risks associated with security arguments. This
approach enables requirements engineers to make informed
decisions about the implications of security risks, and how
the system could maintain a good-enough level of security
satisfaction. Our approach is different from other risk assess-
ment frameworks in several ways. First, our approach uses
security arguments, derived from a systematic description of
the system context and formal reasoning about the satisfaction
of the security requirements, as top-level structure of risk
assessment. Second, RISA treats assumptions made in the
arguments as a major source of risks, mitigation of which is
a responsibility to be discharged either by the software or the
system context. Third, the approach makes extensive use of
publicly available catalogs on security risks, and mechanisms
to mitigate risks. These evolving catalogs reflect the changing
nature of security threats, and provide a valuable source of
knowledge to requirements engineers.

The rest of the paper is organized as follows. Section II
introduces our running example, the PIN Entry Device (PED)
case study. Section III provides some background discussion
on security requirements satisfaction, argumentation, and the
security catalogs CAPEC and CWE that support the RISA
method. Section IV presents the RISA method, describes the
role played by argumentation and risk assessment, and lists its

steps. Section V demonstrates the RISA steps using the PED
example. Section VI discusses the method and reviews related
work, and Section VII concludes the paper.

II. ILLUSTRATIVE CASE STUDY: PIN ENTRY DEVICE

PIN Entry Device (PED) is a type of device widely-
deployed and used by consumers to pay for goods with debit
or credit smartcards at the Points-Of-Sales (POS).

When using the device, cardholders typically insert their
cards, issued by a financial institution, into a card-reader in-
terface of the PED, enter the PIN using the PED’s keypad, and
confirm the transaction value via a display on the PED itself.
Then smartcard-based systems are expected to authenticate
cardholders via the PIN and verify the card details against
a public-key certificate before transactions can be completed
successfully. These certificates are usually stored on the chip,
but they can also be stored on the magnetic strip for compati-
bility with card-readers that have not adopted this technology.
Most PEDs used in Europe implement the EMV (EuroPay,
MasterCard and Visa) protocol in the process of authentication
and authorization of payment transactions. This protocol drives
the communication at the PED-card interface and the PED-
bank interface. The protocol in principle allows only encrypted
transmission of the PIN across these interfaces when the PED,
card and bank support asymmetric cryptography. However,
many card issuers adopt a low-cost EMV option in their
smartcards that can be triggered to transmit unencrypted PIN
on the interface PED-card.

Drimer et al. [6] studied two popular PEDs produced
by different manufacturers, and evaluated either under the
Visa evaluation scheme [7] or under the Common Criteria
evaluation scheme [8]. The PEDs were found to be vulnerable
to unsophisticated attacks in practice, and the authors have
drawn lessons from this not only in relation to the evaluation
process [6], [9] but also in relation to the software development
life cycle. Throughout this paper, we will use this non-trivial
example to explain and to motivate the RISA method.

III. BACKGROUND

The RISA method relies on two main concepts proposed
by Haley et al. [1]: the notion of the satisfaction of security
requirements, and the use of outer and inner arguments to
demonstrate the system security. This section recaps those
concepts, and discusses the security catalogs used by the RISA
method.

A. Satisfaction of Security Requirements

Following the WSR principle of the Problem Frames ap-
proach [10], the framework of Haley et al. separates software
artifacts into W , S and R, where W represents a description
of the world in which the software is to be used (i.e., the
system context), S represents the specification of a system,
and R represents a description of the requirements. The main
property of these artifacts is that the software within the system
context should satisfy the requirements, as indicated by the
entailment (1):

W,S ` R (1)

Similar to the Problem Frames approach, the framework of
Haley et al. describes the world context W in terms of domains
(short for problem world domains), elements of the world that
can be either tangible (such as people, other systems, and
hardware) or intangible (such as software and data structure).
Typically, W also contains assumptions made about these
domains. Domains interface with each other and with the
system S via shared phenomena (such as events, states and
values) that are controlled by a domain and are visible to some
other domain(s).

In the framework of Haley et al., security requirements
are constraints on functional requirements that protect the
assets from identified harms. For example, in the requirement
“Provide Human Resource (HR) data requested by the user,
only to HR staff”, providing HR data to users making the
requests is regarded as a functional requirement, and ensuring
that only those requests from members of HR staff are fulfilled
is regarded as a constraint on the functional requirement, thus
a security requirement. Security requirements are part of R in
the entailment (1). Therefore, satisfaction of security require-
ments, spelled out in security arguments, show (i) whether
properties of W and S entail the security requirements, and
(ii) whether assumptions in W and S are correct.

B. Security Arguments of Haley et al. Framework

The framework of Haley et al. distinguishes two kinds of
argument for satisfaction of security requirements.

1) Outer arguments: The outer arguments show whether
properties of W and S entail the security requirements.
These arguments are typically expressed in a formal language,
such as propositional logic. Therefore, outer arguments are
proofs of the entailment (1) for security requirements. This is
expressed as follows:

(domain behavior premises) ` (security requirement(s))
(2)

Outer arguments rely on properties of W and S (domain
behavior premises), some of which may turn out to be incor-
rect assumptions. These premises need to be challenged, and
be grounded in facts if possible, or taken as true, for instance,
on the basis of a lack of contrary evidence.

2) Inner arguments: The general purpose of an inner
argument is to try to rebut an outer argument by questioning its
premises. Notice that the outer arguments establish the scope
of security assessment, whilst the inner arguments deepen the
assessment. The framework of Haley et al. uses Toulmin-style
structures, enhanced with the notion of recursiveness from
Newman et al. [11], for inner arguments. The general structure
of inner arguments used in the framework of Haley et al. is
shown in Fig. 1.

A claim is the object of an argument, a statement that one
wishes to convince an audience to accept. A ground is a piece
of evidence, a fact, a theory, a phenomenon considered to be
true. A warrant is a statement that links a ground and a claim,

2

counterargument

Grounds Claim

argument

Rebuttals

flow of argumentation

Warrants

Fig. 1. Structure of arguments used in the framework of Haley et al. [1]

showing how a claim is justified by ground(s). A rebuttal
is a counterargument which reduces support for the claim.
Specifically in the case of security-related argumentation,
rebuttals represent the risks that the claim of an argument
is false. Rebuttals can be mitigated in order to restore the
confidence that the claim of the rebutted argument is true. A
mitigation, while negating a rebuttal, may introduce additional
knowledge to show that the rebuttal, i.e. a risk, can somehow
be tolerated. Therefore, mitigations address risks but may not
necessarily eliminate the risks, and residual risks may remain.
Moreover, mitigations may also introduce new risks, leading
to new rounds of rebuttals and mitigations in argumentation.

C. Relationship between Outer and Inner Arguments

Fig. 2 shows how outer and inner arguments are related: the
formal outer argument provides the main structure that drives
the inner argumentation. Each of the outer argument premises
(a → b) is the beginning for one thread of inner arguments,
where a is the ground and b is the claim to be challenged by
examining the ground a and the implication →. Each round
of inner argumentation is indicated by the notation R | Mr.n,
where R stands for Risk and M for Mitigation, r indicates
the round and n represents a sequential number.

Outer argument premises

ro
u
n
d
s

o
f

in
n
er

 a
rg

u
m

en
ta

ti
o
n

Premise 1: ground−claim argument Premise 2: ground−claim argument

R1.2

M2.1

M2.2

R3.2

R3.2

R1.1 risks

mitigations

risks

R1.2

M2.1

M2.2

R3.2

R3.2

R1.1 risks

mitigations

risks

ground claim/
ground

claim/
ground

Fig. 2. Relationship between outer and inner arguments

In Section IV, we contrast the process of argumentation
used in the framework of Haley et al. with our new approach
proposed by the RISA method.

D. Public Catalogs of Security Expertise

The National Cyber Security Division of the U.S. De-
partment of Homeland Security has a strategic initiative to
promote software assurance. Two projects under this initiative
are particularly useful for the RISA method, namely, CAPEC
and CWE1.

1Their websites, http://cwe.mitre.org/ and http://capec.mitre.org/, are both
sponsored and managed by the Mitre Corporation.

Common Attack Pattern Enumeration and Classification
(CAPEC) is a publicly available catalog of known at-
tacks, described according to a standard schema [12]. The
CAPEC catalog2, contains 460 entries, organized according
to different views and categories. Complete CAPEC en-
tries provide not only information about attack execution
flow, methods of attack, attack prerequisites, and attacker
skills/knowledge/resources required, but also about typical
severity, and generic solutions and mitigations. In addition,
complete entries in CAPEC also provide pointers to specific
weaknesses (“underlying issues that may cause vulnerabil-
ities” [12]), i.e. to CWE(s), and to concrete examples of
vulnerabilities which have been detected in use (these are CVE
(Common Vulnerabilities and Exposure) entries recorded in
the National Vulnerability Database3).

Common Weakness Enumeration (CWE) is a public catalog
of weaknesses4, where each weakness can either become a
direct source of vulnerabilities, or contribute indirectly to an
increase in the likelihood of an attack to happen and/or an
increase in the impact of the attack, if it succeeds [12]. It
also follows a standard schema [13], providing different views,
groupings and relations with other weaknesses, as well as
pointers to CAPEC and CVE entries. Complete CWEs indi-
cate common consequences, likelihood of exploit, detection
methods and potential mitigations at different phases, such
as Requirements and Architecture/Design. The RISA method
uses CAPEC and CWE as sources for security knowledge,
making the analysis of risks more systematic, repeatable, and
less dependent on subjective judgments.

IV. OVERVIEW OF THE RISA METHOD

As shown in Fig. 3 the RISA (RIsk assessment in Security
Argumentation) method extends the process of argumentation
for security requirements proposed in the Haley et al. frame-
work by incorporating a process of risk assessment.

Steps 1 to 3 of the proposed approach are same as the first
three steps of the framework of Haley et al., and are briefly
summarized below.

A. Step 1 to Step 3

In Step 1 (Identify Functional Requirements), functional
requirements of the system and the system context (domains
and shared phenomena) are identified. These requirements may
be derived from the higher-level goals of the system. In Step
2 (Identify Security Goals), assets that need to be protected,
management principles regarding those assets, and security
goals are identified. In Step 3 (Identify Security Require-
ments), security requirements are derived from security goals,
and are expressed as constraints on the functional requirements
identified in Step 1. Problem diagrams are constructed in this
step.

2http://capec.mitre.org/data/, version 1.6, accessed on 21 Feb 2011
3http://nvd.nist.gov/, version 2.0, accessed on 21 Feb 2011
4http://cwe.mitre.org/data/, version 1.11, accessed on 21 Feb 2011

3

Fig. 3. Schematic overview of the RISA method

B. Step 4: Construct Outer Arguments

Unlike the fourth step of the Haley et al. framework,
only the outer arguments for security requirements (excluding
the inner arguments) are constructed in Step 4 of RISA.
These outer arguments are formal, and they make use of
domain properties, correctness of which is examined by inner
arguments. Behavioral premises used in the outer arguments
may represent risks, which are identified using a systematic
risk assessment process in RISA. This is represented in the
figure by the arrow from Step 4 to Step 5.

Steps 5 to 8 correspond with the process of constructing
inner arguments in the Haley et al. framework. These four
steps show how domain assumptions in outer arguments are
challenged by means of risk assessment based on public
security catalogs.

C. Step 5: Identify Risks

In this step, behavioral premises in outer arguments regard-
ing the domains (arrow from Step 4 to Step 5 in Fig. 3) are
identified as potential risks. For instance, in the PED example,
there could be a behavioral premise about the confidentiality
of the PIN entered using the keypad. Public security catalogs
are then searched to find known security weaknesses regarding
the confidentiality of passwords entered using a keypad.

D. Step 6: Classify Risks

The risks are classified into two groups. In one group
are risks transferred to the context because nothing can be
done by the system to mitigate them. In the PED example,
the confidentiality of the PIN (one of the PED security
requirements) depends on cards having certain cryptographic
capabilities. Although the PED can generally comply with this
demand, there is still the risk that the card will not comply.
Therefore, the obligation to mitigate this risk is transferred
either partially or fully to the card. In the other group are risks

that should be mitigated by the system. In the PED example,
integrity of the PIN over the network has to be ensured by
the system. Classification and transferring of obligations to
mitigate risks to the system and its context could modify the
behavior and properties of the domains and shared phenomena,
and perhaps even the functional requirements (as indicated by
the arrow from Step 6 to Step 1). As a result of these changes,
outer arguments may be rebutted.

E. Step 7: Mitigate Risks

Appropriate security mechanisms for mitigating the risks
are searched for in the public security catalogs (arrow from
the catalogs to Step 7). Some of these mechanisms themselves
could introduce new risks and therefore should be assessed in
a new round of inner argumentation (arrow from Step 7 to
Step 5).

F. Step 8: Prioritize Risks

In the last step, risks are prioritized on the basis of their
severity as indicated by the public security catalogs (arrow
from catalogs to Step 8). These risks affect the priority of
requirements to be satisfied (arrow from Step 8 to Steps 1–4).
When the residual risks are deemed to be acceptable given the
limitation of development resources, the system has reached
the level of good-enough security.

G. Discussion

Fig. 4 illustrates how elements from risk assessment, used
in the RISA method, fit into the inner argument schema, as
presented in Fig. 2. Unlike the traditional process of argumen-
tation (based on Toulmin’s practical argumentation [2]), that is
intrinsically performed in depth-first as a dialog (Fig. 2), argu-
mentation based on risk assessment is performed in breadth-
first. Each of these approaches have advantages (discussed in
Section VI) but, typically, in risk assessment two rounds of
argumentation are performed within the same cycle: one is
related to risks that rebut outer arguments, and the other is
related to mitigations that counter these risks.

Therefore, risks regarding all behavioral premises are identi-
fied and classified in terms of those that should be mitigated by
the system and those that should be mitigated by the context,
and prioritized on the basis of the severity of the risk they
represent, providing input to the next round of argumentation.

Mitigate risks

R1.2

R1.1

M2.1

M2.2

R3.2

R3.2

risks
R1.2

R1.1 risks

M2.1

M2.2

R3.2

R3.2

mitigations mitigations

risks risks

ground claim/
ground

claim/
ground

Prioritize
risks

Identify and
classify risks

Identify and
classify risks

Fig. 4. Risk-based inner argumentation

The recursiveness of the inner argumentation is represented
by the indirect connection between Step 5 and Step 7, which
involves the process of finding mitigations to risks, and the

4

direct connection between Step 7 and Step 5, which involves
the process of finding new risks in mitigations.

Public catalogs provide input for all steps in risk assess-
ment, except for Step 6, which has to be done by domain
experts relying on the knowledge of the exact requirements.
In the RISA method, we use CAPEC and CWE to feed the
identification of risks with descriptions and information about
known attack patterns and weaknesses in software. They can
also provide information on how these attacks and weaknesses
can be mitigated, and empirical values indicating the severity
that allow the prioritization of risks. In some cases, in-house
security catalogs may supplement public security catalogs.

Since these risks are attached to arguments and security
requirements, prioritizing risks indirectly results in the priori-
tization of arguments and security requirements.

V. THE PED EXAMPLE

This section describes a step-by-step application of RISA
to the PED example.

A. Satisfaction of Security Requirements

The system under analysis is the PED; it consists of four
main components: card-reader, keypad, display and CPU.

1) Step 1—Identify Functional Requirements: The overall
functional goal of the system in relation to PED users is the
following:
[FG1]: Provide convenient payment option at Points-Of-Sale to
consumers

The following functional requirement can be derived from
the functional goal above:
[FR1]: Allow consumers to pay at Points-Of-Sale with PIN

2) Step 2—Identify Security Goals: Obviously, the con-
sumers’ PIN is the most valuable asset in this case. Protecting
the PIN is important not only because of the potential financial
impact on the consumers, but also because of the substantial
negative impact it will have on the reputation of the banking
authorities [14], and the PED manufacturers. Card details,
stored in smartcards, are also relevant assets; their value
comes from the possibility to fake the magnetic-strip on the
smartcards [6]. Other assets involved with the PED system
include: transaction value, design characteristics, the smartcard
itself, and cryptographic keys. For the illustration of our
analysis, the main security goal is to protect the PIN.

3) Step 3—Identify Security Requirements: As mentioned
earlier, security requirements are viewed as constraints on
the system functional requirement according to its functional
goals. In this case, such a composition produces the following
two security requirements:
[SR1]: PIN entered by consumers shall remain confidential
during payment transactions at Points-Of-Sale
[SR2]: PIN entered by consumers shall remain accurate during
payment transactions at Points-Of-Sale (i.e. integrity of the PIN
shall be preserved)

According to the documentation available about the PED
system (e.g. [6], [14]), these two requirements are satisfied by
implementing the following security functions:

[SF1]: Enclosure of PED components provides tamper detec-
tion and response mechanisms to resist physical attacks
[SF2]: Encryption/Decryption of PIN ensures that the PIN is
encrypted within the PED immediately after the PIN entry is
complete

These security functions correspond with the “require-
ments” A1.1 and C2, extracted from the PED security require-
ments document from Mastercard [15].

The system context, W in the entailment (1), is then
elaborated. The functional requirement of the PED helps us to
delimit the context; from “payment transaction using a PED”
we identify five domains: consumer, card, merchant, terminal
and bank. Using a slightly modified version of the notation
used by the Problem Frames approach [10], Fig. 5 shows the
context of the PED system and its security requirements. The
notation is unusual in two ways: (i) it treats the PED system
as a machine with its own components, and (ii) causality in
shared phenomena is indicated by directed arrows. Notice that
the diagram shows the shared phenomena related not only to
PIN, but also to the card details and the transaction value,
which are relevant to the PED payment transactions.

In terms of PIN, the diagram illustrates the behavior already
described in Section II, namely that “Cardholders [consumers]
typically insert their cards . . . into the PED’s card-reader
interface, enter their PIN using the PED’s keypad, and confirm
the transaction value via a display on the PED itself”. Note that
the action performed by consumers to insert their cards into
the card-reader is not represented explicitly in the diagram.

The PED system has two possible main usage scenarios. It
can be used at the Points-Of-Sales connected to a terminal, or
stand-alone. The former case is often found in supermarkets,
once the merchant scans products, their value get registered
by the terminal; at the end, the terminal sends the value of the
transaction to the PED that displays the value to the consumer.
The latter case is often found in restaurants: the merchant
enters the transaction value directly into the PED via the
keypad and the PED displays this value to the consumer.

The card details flow from their initial location (the card)
along with the PIN and the transaction value until they reach
the bank for approval.

The shared phenomena related to the PIN in Fig. 5 are
detailed using the following convention: an arrow from a
domain A annotated with phenomenon b is written as A!b.

• consumer!PIN: consumer enters PIN
• keypad!PIN: keypad sends PIN to the card-reader
• card-reader!PIN: card-readers sends PIN to the card
• card!confirmation-PIN-ok: card requests confirmation

that PIN is ok to the card-reader
• card-reader!PIN-confirmed(PIN,card-details): card-

reader sends confirmation that PIN is ok to the PED
CPU

• CPU!authorization-request(PIN,value,card-details):
CPU sends request for authorization of payment
transaction to bank

• bank!confirmation-transaction: bank sends confirma-
tion (positive or negative) of transaction to the PED CPU

5

PIN

value

PIN-
confirmed(PIN,

card-details)

consumer PINvalue

value

PIN

confirmation-
PIN-ok

card-details

PEDauthorization-
request(PIN,value,

card-details)

value
value

value PIN shall remain
confidential and accurate during

payment transactions

confirmation-
transaction

Shared phenomenon between domains, as
indicated by direction of arrow

Machine/System

card-
reader cardCPU

display keypad

merchant

terminal

bank

Domain p

Security requirements which constrain the system

Fig. 5. System context of the PED system and its security requirements

4) Step 4—Construct Outer Arguments: The behavior of
the PIN needs to guarantee that:

P1, P2, P3, P4, P5, P6, A7 ` bank!confirmation-transaction

The premises are defined below using the propositional
logic.
Premises:
P1. consumer!PIN → keypad!PIN
P2. keypad!PIN → card-reader!PIN
P3. card-reader!PIN → card!confirmation-PIN-ok
P4. card!confirmation-PIN-ok → card-reader!PIN-confirmed
P5. card-reader!PIN-confirmed → CPU!authorization-request
P6. CPU!authorization-request → bank!confirmation-transac-
tion
Triggering assumption:
A7. consumer!PIN holds
Conclusions:
C8. keypad!PIN (Detach,P1,A7)
C9. card-reader!PIN (Detach,P2,C8)
C10. card!confirmation-PIN-ok (Detach,P3,C9)
C11. card-reader!PIN-confirmed (Detach,P4,C10)
C12. CPU!authorization-request (Detach,P5,C11)
C13. bank!confirmation-transaction (Detach,P6,C12)

Assuming that the phenomena in behavioral premises (P1–
P6) are triggered in sequence, context is correct and later
implementation of the PED does not introduce deviations from
the behavior specified, this proof means that, in principle,
the PED behavior (i.e., the PED with its security functions
under its context) can satisfy both security requirements (SR1:
confidentiality of PIN, and SR2: accuracy of PIN) while
meeting its own functional requirement (FR1). It proves that
the entailment (2) can be fulfilled for the PED example.

However, the proof premises (P1-P6) and triggering assump-
tion (A7) can be challenged in practice. If any of these can
be challenged effectively, the result could represent a non-
satisfaction of entailment (2) for the PED example.

B. Risk assessment for inner arguments
The premises (P1–P6) and triggering assumption (A7) of

the outer argument, the output of the previous step, provides

a structure for assessing risks. The following discussion will
focus on risks related to SR1 only.

1) Step 5—Identify Risks: This activity aims to identify
the risks related to the security requirement SR1 that could
rebut all the premises and triggering assumptions carried over
from the outer argument. Supported by the CAPEC and CWE
security catalogs, the activity involves searching for catalog
entries that represent a risk to the claim of each premise,
including the triggering assumption. For example, what has to
be challenged for premise “P1: consumer!PIN → keypad!PIN”
is the confidentiality of consumers’ PIN (SR1). This involves:
(i) the confidentiality of the PIN as it is entered by consumers
(A7), and (ii) the confidentiality of the PIN from the moment it
is entered by consumers until it reaches the keypad. Therefore,
these two aspects drive the analysis of risks which can rebut
P1. As illustrated in Fig. 6, risks identified for P1, given A7,
allow us to evaluate the satisfaction of conclusion C8 of the
outer argument for SR1. Similar rationale applies to P2-P6.

inner argumentation
for conclusion about C9
of the outer argument

confidentiality
risks to

confidentiality
risks to

inner argumentation
for conclusion about C10
of the outer argument

R1.5

R1.1
... ...

R1.6

R1.9

leaves keypad
keypad (P1)/ PIN

(P2)

PIN reaches
card−reader (P2)/

card−reader (P3)
PIN leaves

PIN reaches
transaction and
enters PIN (A7)

of the outer argument
for conclusion about C8
inner argumentation

Consumer initiates

Fig. 6. Behavioral premises of the PED system to be challenged via risk-
based inner argumentation

Table I lists the risks identified for premises P1 and P2
with references to CAPEC and CWE entries. It also contains
some references marked with the symbol ?, indicating the
CAPEC/CWE entries that are related to the risk but are not
incomplete enough to be useful at this stage. Since these
catalogs are constantly evolving it is important to keep them
for future reference.

2) Step 6—Classify Risks: We classify risks according to
two types of risk treatments.

6

TABLE I
IDENTIFICATION OF RISKS FOR PREMISES P1 AND P2

Challenged Risk Reference
Premise P1 R1.1: consumer is triggered to

reveal PIN via social engineer-
ing attack

CAPEC-403?

Premise P1 R1.2: PIN is revealed by miss-
ing PIN field masking

CWE-549

Premise P1 R1.3: PIN is revealed by brute
force attack

CAPEC-49,
CAPEC-70 &
CAPEC-112

Premise P1 R1.4: PIN is revealed due to
lack of aging policy

CWE-262

Premise P1 R1.5: PIN is collected by fake
PED set to allow pharming at-
tack

CAPEC-89

Premise P2 R1.6: PIN is revealed if sent
unencrypted within the PED
and the PED enclosure can be
tampered with

CWE-311 &
CAPEC-436?

Premise P2 R1.7: PIN is revealed if sent
encrypted within the PED but
PED enclosure can be tam-
pered with

CAPEC-20 &
CWE-327 &
CAPEC-436?

Premise P2 R1.8: PIN is revealed via snif-
fer installed by PED adminis-
trators

CAPEC-65

Premise P2 R1.9: Unauthorized access to
PIN is concealed via log
injection-tampering-forging by
PED administrators

CAPEC-93

A risk is classified as “transfer risk” if it is assumed
that context domains, involved in ensuring the satisfaction
of the entailment (1), will be responsible for its mitigation.
Identifying such a class of risks is important for two reasons:
it allows different parties in the PED context domains to be
made explicitly accountable for the mitigation of the identified
risks, and it allows regulations to be enforced [16].

A risk is classified as “mitigate risk” if it is assumed
that the system will be responsible for its mitigation. The
classification of risks from Table I is shown in Table II.
Note that this table illustrates with R1.7 that one risk can
be classified in both classes. Typically, risks classified under
“mitigate risk” contain brief descriptions of mitigations in the
format of requirements. Mitigations described in this table are
mostly retrieved from best practices solutions and mitigations
described in the CAPEC and CWE entries mentioned in
Table I. For example, CWE-311 (reference for risk R1.6),
entitled “Missing Encryption of Sensitive Data” discusses
potential mitigations for this weakness in terms of different
phases of the software life cycle. Under Phase:Requirements,
we find the description of mitigation “Any transmission of PIN
should use well-vetted encryption algorithms”, as presented in
Table II.

3) Step 7—Mitigate Risks: Only those risks classified as
“mitigate risks” are carried over to this stage. This step
involves a cross-analysis of mitigations identified for each risk
during the classification activity (Table II), in order to obtain

TABLE II
CLASSIFICATION OF RISKS FOR PREMISES P1 AND P2

Risk Risk treatment
R1.1 Transfer risk: assumed consumers take mitigations
R1.2 Mitigate risk: PED should obfuscate display of PIN

as entered by consumers in keypad
R1.3 Transfer risk: assumed banks (e.g., require strong PIN

policy) and consumers (e.g., avoid common, guessable
PIN) take mitigations

R1.4 Transfer risk: assumed banks and card issuers take
mitigations (e.g., by periodically requiring PIN change
and card renewal)

R1.5 Mitigate risk: PED should use (i) authentication
mechanisms, and (ii) audit mechanisms to log autho-
rized replacements

R1.6 Mitigate risk: Any transmission of PIN should use
well-vetted encryption algorithms

R1.7 Mitigate risk: (i) encryption of PIN should use ac-
cepted algorithms and recommended key sizes, (ii)
cryptographic keys should be managed and protected
(Transfer risk: assumed cards will also comply with
this mitigation), (iii) PED design should allow upgrade
of cryptographic algorithms

R1.8 Mitigate risk: Any transmission of PIN should be
encrypted

R1.9 Mitigate risk: PED should provide access control to
physical log files

a consolidated list of mitigations, as shown in Table III. This
table shows that mitigation M2.4 counters risks R1.6, R1.7
and R1.8, and that risk R1.7 is countered by mitigations M2.4,
M2.5 and M2.6. Notice that risks R1.1., R1.3 and R1.4 are not
presented in the table.

TABLE III
MITIGATIONS OF RISKS IDENTIFIED FOR P1 AND P2

Risk Mitigation
R1.2 M2.1: PED should obfuscate display of PIN as

entered by consumers in keypad
R1.5 M2.2: PED should use authentication mechanisms
R1.5 M2.3: PED should have audit mechanisms to log

authorized replacements
R1.6 &
R1.7 &
R1.8

M2.4: Any transmission of PIN should use well-
vetted encryption algorithms and recommended
key sizes

R1.7 M2.5: Cryptographic keys should be managed and
protected

R1.7 M2.6: PED design should allow upgrade of cryp-
tographic algorithms

R1.9 M2.7: PED should provide access control to phys-
ical log files

4) Step 8—Prioritize Risks: This step involves retrieving
from the CAPEC and CWE entries indicating the severity of
risks identified, as shown in Table IV.

This table makes it evident that this analysis only gives a
rough impression of the severity of risks and that security
experts are again confronted with incomplete information,
which often happens in security practice. It also becomes
apparent that, because several CAPEC and CWE entries may

7

TABLE IV
PRIORITIZATION OF RISKS FOR PREMISES P1 AND P2

Mitigation Risk Typical risk severity
M2.1 R1.2 no indication in the CWE
M2.2 R1.5 very highM2.3 R1.5
M2.4 R1.6 &

R1.7 &
R1.8

low to very high (depending on specifics
of different attacks)

M2.5 R1.7 low to high (depending on specifics of
different attacks)M2.6 R1.7

M2.7 R1.9 high

refer to the same risk, we may obtain in the end a lower bound
and an upper bound on risk severity. In this case, a decision
should be made about the strategy to follow depending on
several factors, such as attitude towards risk (e.g., risk-averse,
risk-taking or in-between), security-criticality of the system,
and so on. For example, from a risk-averse point-of-view, we
consider M2.2, M2.3 and M2.4 as priority over the others.

Recursion of Inner Arguments Mitigations may also
introduce new risks, so for each mitigation in Table III a new
iteration of Step 5 may be required. These iterations stop when
the system security is considered good-enough, i.e. the residual
risks are considered acceptable, and the resources for security
analysis have been used (e.g., deadline or budget have been
reached).

For example, if we take mitigation M2.3 which is related
to the very high severity risk R1.5 (Table IV), we can see
that this risk refers to the possibility of pharming attacks
(Table I). According to CAPEC-89, a pharming attack occurs
“when the victim is fooled into entering sensitive data into
supposedly trusted locations”. This risk challenges the premise
P1, which refers to the PIN shared between consumer and
keypad (Fig. 5). Since SR1 is about the confidentiality of
PIN, the risk assessment suggests that the pharming attack is a
rebuttal to the security argument of SR1. The risk assessment
further indicates that one way to mitigate this risk is by
introducing an audit mechanism for the keypad (Table III).
This new round of rebuttal to the premises of the security
argument, and a mitigation to the rebuttal are obtained from
the risk assessment.

VI. RELATED WORK & DISCUSSION

A. Risk in Requirements Engineering

In requirements engineering literature, the issue of risks
has been considered in two related yet distinct ways: project
risks and system risks. Project risks are related to the process
of software development and factors that may contribute to
the failure and success of the project. Several factors may be
related to the project risks, including requirements creep [17],
[18], requirements negotiation and project estimates [18], and
project resources. System risks are related to the behavior of
the software system that may contribute to the system satis-
fying or not satisfying the requirements. Factors contributing

to system risks include missing or incorrect requirements and
domain assumptions [19].

Threat modeling for the elicitation of security requirements
has been extensively researched in the domain of requirements
engineering. Published approaches include: misuse cases [20],
abuse cases [21], attack trees [22], abuse frames [23], anti-
goals [24], and combinations of these [25]. These approaches
overlap only partially with the RISA method, mainly in the
activity of risk identification. In this activity, they may provide
a more in-depth analysis of specific issues/scenarios, therefore,
in this sense they complement RISA. However, they lack the
advantage of argumentation to allow validation of security
requirements satisfaction and of maintaining the focus of
security on the system as a whole.

B. Structured Argumentation

Argumentation provides a rationale to convince an audi-
ence that a claim should be considered valid. Three qualities
are often discussed in the informal argumentation literature:
convincingness, soundness, and completeness. Convincingness
relates to whether the argumentation is compelling enough to
assure an intended audience that the conclusion reached is
reasonable [1]. Soundness relates to whether the argumenta-
tion fulfills the argumentation schema and is based on “true
premises” [26]. Completeness relates to whether nothing has
been omitted that could lead to a different conclusion about a
claim [26], [27].

A known problem in argumentation is the subjectivity in-
volved in identifying arguments and counterarguments (which
relates to soundness), and the difficulty in determining com-
pleteness. Proposals to reduce these problems rely on the help
of: (i) pre-defined critical questions [28], [29], (ii) what-if
scenarios [30], (ii) expert assurance checks [26], (v) guide-
lines [31] or (vi) how/why questioning, as proposed in [1].
However, these approaches provide limited support and are
rather static, i.e. they do not evolve in the speed required to
assure good-enough security of systems. The RISA method
reduces these problems by using ever evolving public catalogs,
updated using input by a pool of security experts from several
organizations5.

Since security involves uncertainty and incomplete informa-
tion, it becomes difficult, if not impossible, to show satisfac-
tion of these qualities. Expert judgment is needed, probably
enhanced with peer review [26], to improve the quality of
good-enough security argumentation. Nevertheless, the main
benefit of using argumentation is that, in contrast to an ad-
hoc approach, it structures the reasoning and exposes it to
criticism [26]. The RISA method contributes towards reducing
incompleteness and uncertainty because its risk-based argu-
mentation is supported by public catalogs which accumulate
information about risks, best practice mitigations and empirical
severity values based on input from a large community of
security experts.

5http://cwe.mitre.org/community/index.html, accessed on 21 Feb 2011

8

C. Traditional versus risk-based (security) argumentation

As mentioned in Section III, the process of argumentation
traditionally follows a depth-first style. It provides a neat
and intuitive view about the evolution of an argument in
the format of a debate between two opponents. It is well-
suited to be represented as a tree structure of arguments and
counterarguments.

This process of argumentation, however, is not suitable
when reasoning about practical security. For example, it often
happens that one mitigation counters several risks, one risk
challenges several premises, and several mitigations introduce
one same new risk as seen in Table III, Step 2. As a
result, rather than a tree, a more complex graph structure of
arguments is often needed. In such situations, a breadth-first
style of argumentation based on risk assessment scales better.
The RISA method is designed for such practical needs, while
still providing the ability to reconstruct argument threads via
backward traceability. Thus it is possible to link mitigations
back to risks, then back to premises, which relate to the outer
arguments to be validated in the first place.

D. Risk Assessment

Three basic elements distinguish the risk-based security
argumentation method described in this paper from other
risk assessment frameworks: (i) it provides a rationale for a
systematic representation of system context from which the
behavior of the system is derived and the outer argument is
constructed, providing structure to the risk assessment part of
the method, (ii) it makes assumptions about domains of the
system context explicit via transferred risks, and (iii) it uses
public security catalogs to support the risk assessment.

Explicit Context. In the CORAS framework [32], context
is established by means of an asset diagram (CORAS Step
2) which contains all assets that are logically or physically
related to the system to be assessed. Assets that are directly
harmed as a consequence of an unwanted event affecting the
target of evaluation are considered as part of the system under
analysis: otherwise, they are considered as part of the system
context. The boundary between system and system context can
be further adjusted in CORAS (Step 3) after a preliminary
analysis of risks by means of “dependent diagrams” [33].
Context is delimited in the RISA method by means of the
system functional goal and security requirements, from which
context domains are derived. This allows us to relate the results
of risk assessment to the satisfaction of security requirements.

Other security risk assessment and evaluation
frameworks (e.g., CRAMM [34], ISO 27005:2008 [35],
AS/NZS4360:2004 [36], and Common Criteria [8]) do not
prescribe any representation or delimitation rationale for
context specification; context is often described in natural
language.

Assumptions as Risk. Among the above mentioned risk
assessment and evaluation frameworks, the Australian/New
Zealand Standard (AS/NZS4360:2004 [36]) is the only one
which conveys explicitly the idea that assumptions represent
risks. It prescribes that assumptions should be recorded and

clearly stated but, most importantly, mandates sensitivity anal-
ysis to test the effect of uncertainty in assumptions. The current
RISA method does not incorporate validation of assumptions
made about the system context but it classifies them as risks
to be transferred. We plan to further study risks transferred
and how they affect the satisfaction of security requirements
as future work.

Evolving & Detailed Source of Information. The CORAS
framework [32] uses the guidelines in ISO 27001:2008 [35]
to support risk assessment. CRAMM [34] is supported by a
proprietary database of security controls that are traceable to
risks derived also from the ISO 27001:2008 [35]. Although
ISO 27001 is publicly available, it is a static document and
does not provide the level of details provided by CAPEC and
CWE catalogs. However, both CAPEC and CWE, at their
current stage, still need a lot of improvements, especially in
their search capabilities. This is an area that has started to
receive attention from researchers, see e.g. [37].

Specific RISA steps, such as “Identify Risks” and “Mitigate
Risks”, could be supported by other risk assessment frame-
works such as the model-based approach of CORAS which
uses icons instead of tables. However, although it may improve
the user-friendliness of RISA, the traceability of several rounds
of argumentation may become more complex.

VII. CONCLUSION AND FUTURE WORK

Although absolute security is not possible in practice,
security requirements still have to be satisfied to the extent
allowed by incomplete information, uncertainty and limited
resources. When dealing with practical security, requirements
engineers need to reason about whether security is good
enough. That reasoning typically involves risk assessment.
Extending existing work on argumentation for security, the
proposed RISA method has shown how argumentation can be
extended with risk assessment, thereby exploiting the ability
to identify, classify, mitigate and prioritize risks, and feeding
the prioritized risks back to the process of reasoning about
the satisfaction of the security requirements. RISA takes ad-
vantage of publicly available catalogs of common attacks and
weaknesses, thus a degree of objectivity can be achieved in the
risk assessment. Nevertheless, subjectivity is not completely
eliminated by catalogs such as CWE and CAPEC: for instance,
the evaluation of risk severity is likely to remain subjective.
However, this evaluation is prone to scrutiny by security
experts from the wider community.

The most pressing issue in our future work is validation.
We have demonstrated an application of RISA to a realistic
example of the PIN Entry Device. We are planning to apply the
RISA method to significant industrial case studies, including
the Air Traffic Management system [38]. Furthermore, we
see two main directions for future work which complement
each other: enhancements to the prioritization of risks and
mitigations, consequently reflecting on the prioritization of
arguments, and tool support.

In the current version of the RISA method, prioritization
of risks is qualitative, coarse-grained, and is detached from

9

context. We believe that the Common Weakness Scoring
System [39], which is another recent initiative related to the
CWE, may be valuable in working towards a more systematic
quantitative prioritization of risks taking into account factors
related, for example, to security concerns particular to a
business domain and technology. Prioritization could also be
enhanced by incorporating cost/benefit trade-off considerations
(as in [40]) about mitigations, as well as consideration about
risks. Finally, uncertainty is another important aspect to be
added into prioritization: early work on Probabilistic Argu-
mentation [41] seems to be a promising starting point in this
direction.

Decision making tool support would greatly improve the
practical use of the RISA method. We plan to investigate how
to provide effective automated reasoning about security re-
quirements, based on feedback from risk-based argumentation.

ACKNOWLEDGMENT

The first author is supported by the research program
Sentinels (http://www.sentinels.nl). The UK-based authors
are supported by the SecureChange project, and SFI grant
03/CE2/I303 1. We thank the anonymous reviewers for help-
ful comments and suggestions.

REFERENCES

[1] C. Haley, R. Laney, J. Moffett, and B. Nuseibeh, “Security Requirements
Engineering: A Framework for Representation and Analysis,” IEEE
Trans. Softw. Eng., vol. 34, no. 1, pp. 133–153, 2008.

[2] S. Toulmin, R. Rieke, and A. Janik, An Introduction to Reasoning.
Macmillan, 1979.

[3] T. P. Kelly, “Arguing Safety - A Systematic Approach to Safety Case
Management,” Ph.D. dissertation, University of York, 1998.

[4] B. Burgemeestre, J. Hulstijn, and Y.-H. Tan, “Value-Based Argumenta-
tion for Justifying Compliance,” in DEON’2010. Springer, 2010, pp.
214–228.

[5] R. A. Weaver, “The Safety of Software: Constructing and Assuring
Arguments,” Ph.D. dissertation, University of York, September 2003.

[6] S. Drimer, S. J. Murdoch, and R. Anderson, “Thinking Inside the Box:
System-Level Failures of Tamper Proofing ,” in SP’2008. IEEE Press,
May 2008, pp. 281–295.

[7] Visa, “Testing and Approval,” Website, 2011, https://partnernetwork.
visa.com/vpn/global/category.do?categoryId=103&documentId=
501&userRegion=1, last visited Feb 2011.

[8] “Common Criteria for Information Technology Security Evaluation,
Version 3.1, Revision 3, CCMB-2007-09-001, CCMB-2007-09-002 and
CCMB-2007-09-003,” July 2009.

[9] S. Drimer, S. J. Murdoch, and R. Anderson, “Failures of Tamper-
Proofing in PIN Entry Devices,” IEEE Security and Privacy, vol. 7,
pp. 39–45, November 2009.

[10] M. Jackson, Problem Frames: Analysing and Structuring Software
Development Problems. Addison-Wesley/ACM Press, 2001.

[11] S. E. Newman and C. C. Marshall, “Pushing Toulmin Too Far: Learning
from an Argument Representation Scheme,” Xerox PARC, Tech. Rep.
SSL-92-45, 1991.

[12] S. Barnum, Common Attack Pattern Enumeration and Classifica-
tion (CAPEC) Schema Description, Copyright Cigital Inc., com-
missioned by the U.S. Department of Homeland Security, Jan-
uary 2008, http://capec.mitre.org/documents/documentation/CAPEC
Schema Description v1.3.pdf, Version 1.3.

[13] CWE Team, “CWE Schema Documentation,” Online by The MITRE
Corporation, December 2010, http://cwe.mitre.org/documents/schema/
index.html, Version 4.4.2.

[14] The-Card-Payment-Group, “PIN Entry Device Protection Profile,” Com-
mon Criteria Portal, Jul 2003, www.commoncriteriaportal.org/files/
ppfiles/PED PPv1 37.pdf, last visited Jul 2010.

[15] Mastercard International Incorporated, “Payment Card Industry POS
PIN Entry Device Security Requirements,” m2m Group website, http:
//www.m2mgroup.ma/livresetdocs/security%20risk.htm, last visited Feb
2011, October 2004, version 7 1.0, Revised March 2005.

[16] R. Anderson, “Failures on Fraud,” Speed, vol. 3, no. 2, pp. 6–7,
September 2008.

[17] R. A. Carter, A. I. Antón, L. A. Williams, and A. Dagnino, “Evolving
Beyond Requirements Creep: A Risk-Based Evolutionary Prototyping
Model,” in RE’01, 2001, pp. 94–101.

[18] J. Chisan and D. Damian, “Exploring the role of requirements engineer-
ing in improving risk management,” in RE’05, 2005, pp. 481–482.

[19] A. V. Miranskyy, N. H. Madhavji, M. Davison, and M. Reesor, “Mod-
elling Assumptions and Requirements in the Context of Project Risk,”
in RE’05, 2005, pp. 471–472.

[20] G. Sindre and A. L. Opdahl, “Eliciting security requirements with misuse
cases,” Requirements Engineering Journal, vol. 10, no. 1, pp. 34–44,
2005.

[21] J. McDermott and C. Fox, “Using Abuse Case Models for Security
Requirements Analysis,” in ACSAC’99. IEEE Press, 1999, pp. 55–64.

[22] B. Schneier, “Attack Trees: Modeling Security Threats,” Dr. Dobb’s
Journal, December 1999.

[23] L. Lin, B. Nuseibeh, D. Ince, and M. Jackson, “Using abuse frames
to bound the scope of security problems,” in RE’04. IEEE Computer
Society, 2004, pp. 354–355.

[24] A. van Lamsweerde, “Elaborating Security Requirements by Construc-
tion of Intentional Anti-Models,” in ICSE ’04. IEEE Press, 2004, pp.
148–157.

[25] I. A. Tøndel, J. Jensen, and L. Røstad, “Combining Misuse Cases with
Attack Trees and Security Activity Models,” in ARES’2010. IEEE
Press, 2010, pp. 438–445.

[26] P. Graydon and J. Knight, “Success Arguments: Establishing Confidence
in Software Development,” University of Virginia, Tech. Rep. CS-2008-
10, July 2008.

[27] S. B. Shum and N. Hammond, “Argumentation-based Design Rationale:
What Use at What Cost?” Int. Journal of Human-Computer Studies,
vol. 40, no. 4, pp. 603–652, 1994.

[28] D. N. Walton, Argumentation Schemes for Presumptive Reasoning.
Mahwah NJ, USA: Lawrence Erlbaum Associates, 1996.

[29] K. Atkinson, T. Bench-Capon, and P. McBurney, “Justifying Practical
Reasoning,” in CMNA’04, 2004, pp. 87–90.

[30] P. Baroni, F. Cerutti, M. Giacomin, and G. Guida, “An Argumentation-
Based Approach to Modeling Decision Support Contexts with What-
If Capabilities,” in AAAI Fall Symposium. Technical Report SS-09-06.
AAAI Press, 2009, pp. 2–7.

[31] H. Lipson and C. Weinstock, “Evidence of Assurance: Laying the
Foundation for a Credible Security Case,” May 2008, department
of Homeland Security; online: https://buildsecurityin.us-cert.gov/bsi/
articles/knowledge/assurance/973-BSI.html, last visited Feb 2011.

[32] F. den Braber, I. Hogganvik, M. S. Lund, K. Stølen, and F. Vraalsen,
“Model-based security analysis in seven steps - a guided tour to the
CORAS method,” BT Technology Journal, vol. 25, no. 1, pp. 101–117,
2007.

[33] G. Brndeland, H. E. Dahl, I. Engan, and K. Stölen, “Using Dependent
CORAS Diagrams to Analyse Mutual Dependency,” in CRITIS’2007,
ser. LNCS 5141. Springer Press, 2008, pp. 135–148.

[34] Walton-on-Thames: Insight Consulting, “CRAMM User Guide,” July
2005, risk Analysis and Management Method, Version 5.1.

[35] ISO/IEC-27001/27005, “Information technology. Security techniques.
(27001) Information security management systems; (27005) Information
security risk management.” 2008.

[36] AS/NZS-4360:2004, “Australian/New Zealand Standards, Risk Manage-
ment,” Sydney, NSW, 2004.

[37] P. H. Engebretson and J. J. Pauli, “Leveraging Parent Mitigations and
Threats for CAPEC-Driven Hierarchies,” in ITNG’09. IEEE Press,
2009, pp. 344–349.

[38] Y. Yu, T. T. Tun, A. Tedeschi, V. N. L. Franqueira, and B. Nuseibeh,
“Openargue: Supporting argumentation to evolve secure software sys-
tems,” in RE’11. IEEE press, 2011.

[39] “Common Weakness Scoring System (CWSS),” Online: http://cwe.mitre.
org/cwss/#vectors, 2011, version 0.2, 14 February 2011.

[40] V. N. L. Franqueira, S. Houmb, and M. Daneva, “Using Real Option
Thinking to Improve Decision Making in Security Investment,” in
IS’2010 (OTM Conferences), ser. LNCS. Springer Press, 2010, pp.
619–638.

[41] R. Haenni, B. Anrig, J. Kohlas, and N. Lehmann, “A Survey on
Probabilistic Argumentation,” in ECSQARU’01, 2001, pp. 19–25.

10

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 69/136

APPENDIX D

Managing Evolution by Orchestrating Requirements
and Testing Engineering Processes

Federica Paci1, Fabio Massacci1, Fabrice Bouquet2, and Stephane Debricon2

1 DISI,University of Trento
{Fabio.Massacci,Federica.Paci}@unitn.it
2 Laboratoire d’Informatique, Université de France-Comté

{fabrice.bouquet,stephane.debricon}@lifc.univ-fcomte.fr

Abstract. Change management and change propagation across the various mod-
els of the system (such as requirements, design and testing models) are well-
known problems in software engineering. For such problems a numberof solu-
tions have been proposed that are usually based on the idea of integratedmodel
repositories where traceability links are mantained and automatically triggered.
We propose to manage the mutual evolution of requirements models and tests
models by orchestrating processes based on a minimal shared interface. Thus,
requirement and testing engineers must only have a basic knowledge about the
“other” domain, share a minimal set of concepts and can follow their “own” re-
spective processes. The processes are orchestrated in the sense that when a change
affects a concept of the interface, the change is propagated to the otherdomain.
We illustrate the approach using the evolution of the GlobalPlatformR© standard.

1 Introduction

Change management is a well known problem in software engineering and in particular
the change propagation across the various models of the system (such as requirements,
design and testing models). For such problem a number of solutions have been proposed
that are usually based on the idea of integrated model repositories where traceability
links are mantained and automatically triggered.

For particularly complex and security critical systems as multi-application smart
cards [1] such sharing may simply not be possible. Here is a concrete example: test
engineer in charge of certifying that the card is secure might not have access to system
code (and the relative design models) simply because he is part of a third-party company
to which the certification has been outsourced. Still, the test engineer must cooperate
in the global design process to show that requirements are achieved. Fig. 1 shows an
example of global security engineering process where the activities are labeled with
references to clauses of a national security standard.

Thus, it is important for test and requirement engineer to interact directly and by-
pass completely the system designer. The cooperation between Test Analyst (the pro-
fessional name for model-driven test engineer) and Business Analyst (the requirement
engineer) is crucial. The Test Analyst is responsible for the quality of the test repository
in terms of coverage of requirements and detection of defects. In the other direction,
the Test Analyst interacts with the Tester and Test Automation Engineer to facilitate

Fig. 1. Security Engineering Process

manual test execution or test automation (implementation of keywords). This interac-
tion process is highly iterative. The model-driven testingprocess involves three main
roles:

– The Business Analyst is the reference person for the System-Under-Test (SUT) re-
quirements, business processes and business needs, and he/she communicates with
the Test Analyst to clarify the specifications and testing needs.

– The Test Analyst interacts with the Business Analysts and system experts regarding
the requirements to be covered, and then designs test generation models. He then
uses test generation tools to automatically generate testsand to produce a repository
of test suites that will satisfy the project test objectives.

– A Tester is responsible for (manual) test execution on the basis of the test reposi-
tory while a Test Automation Engineer is responsible for connecting the generated
tests to the system under test so that the tests can be executed automatically. The
input for both Tester and Test Automation Engineer is the test repository generated
automatically by the test analyst from the test generation models.

For this process to work smoothly in presence of changes we need to orchestrate the
work of the requirement engineer with the work of the testingengineer. In many cases,
requirements evolution can have impact on a confined part of the system. In such cases
it would be beneficial to clearly identify only those parts ofthe system that have been
affected by the evolution and that need to be re-tested for compliance with requirements.
In this way re-running all test cases is avoided because it ispossible to identify which
new test case need to be added to the test suite and which test cases can be discarded as
obsolete.

2

1.1 The Contribution of this Paper

We propose a framework for managing the impact of changes happening at requirement
level on testing generation process and viceversa. The key features of the framework
aremodel-based traceabilityby orchestrationandseparation of concernsbetween the
requirement and the testing domain. Separation of concern allows the requirement en-
gineer to have very little knowledge about the test (process, modeling or generation)
domain, and similarly for the test engineer. They only sharea minimal set of concepts
which is theinterfacebetween the requirement and the testing frameworks. Moreover,
both engineers simply need to follow their respective processes (i.e., requirement en-
gineering and testing generation process) separately. Theprocesses areorchestratedin
the sense that when a change affects a concept of the interface, the change is propagated
to the other domain. The interface also supports traceability between the requirement
and test models through mapping of concepts in the two domains.

For sake of concreteness, we instantiate the requirement framework to SI* [11] and
the test framework to SeTGaM [9] . However, our approach is independent from the
specific requirement and testing frameworks that are adopted, and can thus be applied
to other competing instantiations if these have mapping concepts similar to the ones we
propose in Section 6.

In the next section we introduce the evolution of the GlobalPlatform standard for
multi-application smard cards that will be our running example. Then we describe the
overall orchestrated process (§3) and how changes are managed at the requirements
level (§4) and at the level of model-based testing (§5). Sec.6 illustrates the conceptual
interface while Sec.7 presents the application of the process to the case study. Finally
we discuss related works in Sec. 8 and conclude the paper in Sec 9.

2 GlobalPlatform Evolution

The most popular solution for smart cards now isGlobalPlatform(GP) [1] on top of
Java Card [19]. Loosely speaking GP is a set of card management services such as
loading, enabling, or removing applications. The GP specification describes the card
life cycle and the GP components that are authorized to perform a transition in the
life cycle: Security Domains and Applications. Security Domains act as the on-card
representatives of off-card authorities such as the Card Issuer or Application Providers.

The card life cycle begins with the state OPREADY. Then the card can be set to
the states INITIALIZED, SECURED, CARDLOCKED and TERMINATED that is the
state where the card cannot longer be used. During the evolution of card life cycle be-
tween versions 2.1.1 and 2.2 of GP specification as illustrated in Figure 2 a number
of changes took place giving authority to perform transitions to different stakehold-
ers. In GP-2.1.1 a privileged application can terminate thecard from any state, except
CARD LOCKED. Additionally, a privileged application can lock the card by changing
card state from SECURED to CARDLOCKED. However, only the issuer of the card
can move it to TERMINATED state. A security domain is a special kind of privileged
application, and therefore, has exactly the same behavior of privileged application in
terms of card lifecycle management. In GP-2.2 two main changes with respect to GP-
2.1.1 are introduced: a) a privileged application can terminate the card from any state if

3

Fig. 2.Card Life Cycle in GP-2.1.1 and GP-2.2

the application has appropriate privileges; b) any privileged security domain can trigger
all card life cycle transitions while in GP-2.1.1 only the issuer security domain can do
that.

3 Orchestrated Change Management Process

The orchestration of the test and the requirements engineering processes is based on the
principle ofseparation of concern: the two processes should be understood as separate
processes with their own iterations, activities and techniques for managing change.

The UML activity diagram of Fig. 3 gives a high-level overview of the orchestrated
process. The diagram is divided into three partitions to distinguish between the activities
and objects under the control of users, requirement engineers, and test engineers. A user
is typically the client commissioning the testing and may bethe owner of the SUT. In the
diagram, the diamonds specifies branching of the sequence ofactivities. When there is
no guard condition on the branching (specified by the notes with Boolean expressions),
the process proceeds along one or both of the branches. This gives a wide flexibility on
how the overall process may be conducted.

Interactions are triggered by the change request from the user. When this change
request is passed to one or both the test engineer and the requirement engineering, there
are a number of iterations where the changes propagate back and forth between the two
until a stable state (equilibrium) is reached and the results can be passed back to the
user. At the model level, these concrete triggers are changes in a small set of concepts
that works as the interface between the requirement engineering process and the test
engineering process. We will describe these concepts laterin Section 6.

To illustrate the process, we start from changes in the requirement domain:

4

Fig. 3. Integrated Change Management Process

Update ReM. The requirement engineer uses the previous requirement model (ReM-
before) and the change request to update the model, producing ReM-after.

Extract New Actors, Goals, Actions. Based on the ReM-after, new actors, goals and
processes are extracted if relevant and provided to the testengineer.

Update Test Model. Receiving the extracted actors, goals and processes the test en-
gineer based on the traceability links between the ReM and the test model (TeM),
identify the part of the TeM that are affected by the changes in the ReM. The test
engineer thus updates the TeM and the test suite for the updated TeM (See Sec.5
for the test suite generation).

Test Execution.Then, the test engineer executes the new test suite. The test engineer
returns the test results to the requirement engineer in a suitable table. The table
shows for each test case in the test suite the number of times the test has been
executed, the status of the test after evolution, the TeM element and the require-
ments/goals covered by the test case, and the test result.

Requirement Analysis. The requirement engineer evaluates the matrix for each re-
quirement covered by the test and translates the test results into a level of achieve-
ment (partial satisfaction/denial or full satisfaction/denial) for the low level require-
ments. Once the requirement engineer gets the achievement levels for low level re-

5

Fig. 4.SI* conceptual model

quirements, he can run the requirement analysis to determine the level of achieve-
ment also for top-level requirements.

Identify the problem. If some of the requirements are not fulfilled, the requirement
engineer must identify the problem.
1. If there is a problem with the ReM, the requirement engineer must backtrack

and search for an alternative way of updating the ReM when considering the
change request that was initially passed from the user.

b If there is a problem with testing, the test engineer must determine whether
there is the need to generate new test cases or not.

4 Change management for evolving requirements

For the change management process in the requirement domainwe consider here the
SI* requirement model [11] based on the Tropos methodology.As illustrated in Fig. 4,
we consider the concept ofgoaland a subset of SI* relations, namely AND/ORdecom-
position, means-end, require, request, anddependencyrelations.

The requirement analysis process consists of five steps:

1. Identify relevant stakeholders, modeled asactor (circle) and its structure.
2. Capture and refine actors’requirements asgoal (rounded rectangle).
3. Define means to achieve their goals- i.e.,process(hexagon) orresource(rectangle).
4. Model strategic dependencies between actors in fulfilling/executing/providing some

goals/processes/resources.
5. Model specific security and risk related aspects such as introducingsecurity goals,

which are goals protecting assets and that can be identified as result of risk anal-
ysis [24] or analyzing trust relations and delegation of permissions among ac-
tors [11].

6

The requirement analysis is an iterative process that aims at refining the stakehold-
ers’ goals until all high-level goals are achieved. Different reasoning techniques for
achievement can be applied based on goals [25] or arguments and logic-programs [12],
or Datalog and logic programs [11], or a combination of qualitative and quantitative cri-
teria [2]. Since testing may not provide full fledged evidence we may use the approach
by Asnar et al [2] where we use the keyword SAT to denote that the evidence is in favor
of the achievement of the the goal and DEN to denote that the evidence is against it.

The evolution of a requirements model can be triggered by achange requestthat can
be placed by stakeholders, or it can be a reaction to a previous change, or caused by ex-
ternal circumstances and merely observed. By means ofevolution rules, it is possible to
automatically detect changes in the requirement model and it is possible to define reac-
tions to changes. Evolution rules are defined in conformancewith the Event - Condition
- Action semantics: basically, anEventcaptures a dynamic change in the requirement
model, whileCondition identifies the static context where this change happened. An
Action is a list of operations that constitute the reaction to that event.

An example of evolution that can be detected by an evolution rule is the addition
of an actor to the requirement model and the delegation of a security goal by the actor
to another actor which is not trusted. The Event and Condition part of the rule can be
mapped on the addition of the new actor and the missing trust relationship while the Ac-
tion part can specify appropriate reaction ranging from logging the event to automatic
intervention like creating the missing trust relationship.

Evolution rules can also be used to propagate changes in requirement models to
other artefacts e.g risk models and test models (as in our case).

5 Change management for evolving tests

As testing generation process we consider SeTGaM [10]. The model-based testing gen-
eration process starts by the design of the test model by the test architect: the model
should describe the expected behaviour of the system under test (SUT). Then, the test
model is used to generate the test cases and the coverage matrix, relating the tests with
the covered model elements. The tests are then exported, or published, in a test reposi-
tory and then executed. After the test execution, test results and metrics are provided.

The test model consists of three different types of UML diagrams (Fig. 5). First,
a class diagram describes the data model, namely the set of classes that represent the
entities of the system, with their attributes and operations. Second, an object diagram
provides a given instantiation of the class diagram together with the test data (i.e. the
objects) that will be used as parameters for the operations composing the tests. Finally,
the behavior of the system is described by two (complementary) means: a statechart
diagram, and/or OCL constraints associated with the operations of the class diagram.
The test coverage of system requirements and test objectives is achieved byusing the
tags @REM and @AIM to annotate the OCL code.

When an evolution occurs, the status of the test changes depending on the impact
of the evolution on the model elements covered by the test case. Evolution of status
is defined by considering two versions of the test model,M and M

′, in which ad-
dition, modification or deletion of model elements (operations, behaviors, transitions,

7

Fig. 5.Basic testing concepts
Legend:

– requirement: statement about what the system should do
– test model: dedicated model for capturing the expected SUT behavior (Class diagram, State machine)
– test case: a finite sequence of test steps
– test intention: user’s view of testing needs
– test suite: a finite set of test cases
– test script: executable version of a test case
– test step: operation’s call or verdict computation
– test objective: high level test intention.

etc.) have been performed. Test may have a statusnewin case of a newly generated test
for a newly introduced target.

If none of the model elements covered by the test is impacted,the test is run as
is on the new version of the modelM

′, without modifying the test sequence. The test
is thus said to bereusable. More precisely, there are two cases:unimpactedand re-
executed. A test is unimpacted if the test sequence is identical to itsprevious version,
and the covered requirements still exist. The test is re-executed if it covers impacted
model elements, but it can still be animated on the new version of the model without
any modification.

If a test covers model elements impacted by the evolution from M to M
′, and if the

test cannot be animated onM ′ the test becomesobsolete. There are two cases: either
the target represents deleted model elements, and thus the test does not make any sense
on M

′ and it is said to beoutdated, or, the test fails when animated on modelM
′ (e.g.

due to a modification of the system behaviour), it is thenfailed. When the test case
operations can be animated but produce different outputs, anew version of the test is
created in which the expected outputs (i.e. the oracle) are updated w.r.t.M ′. In this case
the tests have the statusupdated. When the test case operations can not be animated as
is in the first version of the test, a new operation sequence has to be computed to cover
the test target. In the latter case, tests have statusadapted.

To determine the status of a test when evolution takes place,the SeTGaM approach
relies on dependency analysis that is performed to compute the differences between the
models, and their impacts on test cases. We have four different classification suites.

– evolution test suitecontains tests classified as new and adapted;

8

Table 1.Conceptual Interface

Requirement Concept Testing Concept Kind of Interaction
Requirement Requirement Shared concept
Goal Test Model (State Machine, OCL code) Mapped concept
Process Test Model (State Machine, OCL code) Mapped concept
Actor SUT Mapped concept
Achievement Level Test result & status Mapped concept

– regression test suitecontains tests classified as unimpacted and re-executed;
– stagnation test suitecontains tests classified as outdated and failed.
– deletion test suitecontains tests, that come from the stagnation test suite from the

previous version of the model.

6 Change Management Conceptual Interface

The orchestration of the requirements engineering processand the test generation pro-
cess is based on the identification of a set of concepts that are shared or mappable in
the two domains: ashared conceptis a concept that has the same semantics in both do-
mains while amappable conceptis a concept that is related to one in the other domain.
Tab. 1 illustrates the conceptual interface. When a concept is changed in a model then
a corresponding change request is issued to the other model.

We identify one shared concepts that isRequirement. A Requirement in both do-
mains represents a statement by a stakeholder about what thesystem should do. The
concepts ofActor, Goal, Processare mapped on the Test Model. In particular, the con-
cept of Actor is used to identify the system under test (SUT).The concepts of Goal and
Process are used by the testing engineer to build the different types of Test Models. The
goals and processes in the Requirement Model are identified by a unique name that is
used to annotate the State Machine of the Test Model and the OCL code in order to
achieve traceability between the Requirement Model and theTest Model.

Mapping of a test case’s result and status to a requirement achievement level allows
the requirement engineer to quantify the requirementcoverageafter evolution. This
correspondence is reported in Table 2: if the status of a testcase after evolution isnew,
adaptedor updated, and the test result ispassthe requirement covered by the test case
is fulfilled while it is denied (i.e. we have evidence that hasnot been achieved) if the
test result isfail. A subtle case is present when a test case is part of the stagnation
suite (i.e.obsolete) and the test result isfail. Here the test covers requirements that have
been deleted from the model and thus the corresponding behavior should no longer
be present (for example a withdrawn authorization) so failing the test shows that the
unwanted behavior is no longer present.

We also considercompletionindicators for the change propagation process which
indicates whether all changes in the requirement model havebeen propagated to the test
model. Table 3 summarizes the mapping between Goal and Process in the requirement
model and the Test Model element. In a nutshell we say that thechange propagation
process has been completed if:

9

Table 2.Requirements Coverage

Test Classification Test Status Test Result Achievement Level
Evolution New, Adapted,Updated Pass Fulfill
Regression Unimpacted, Re-ExecutablePass Fulfill
Evolution New, Adapted,Updated Fail Deny
Regression Unimpacted, Re-ExecutableFail Deny
Stagnation Outdated, Failed Pass Deny
Stagnation Outdated, Failed Fail Fulfill

Table 3.Completion of Change Propagation

Change in ReM Model Test Status Test Suite
New Element (Goal, Process) New Evolution

Modified Element (Goal, Process) Adapted Evolution
Model Element Not Impacted Re-ExecutableRegression

Deleted Element Obsolete Stagnation

– for each new or modified model element in the ReM model a new test case and an
adapted are added to the evolution test suite,

– for each model element not impacted by evolution there is a re-executable test case
in the regression test suite,

– for each model element deleted form the model there is an obsolete test case in the
stagnation test suite.

7 Application to Case Study

We first illustrate how a change from the GP-2.1.1 to the GP-2.2 requirement model is
propagated to the test model and thus how the test suite for the GP-2.2 test model is
generated. Then, we show how the test classification for the test model of GP-2.2 can
be used to evaluate thecompletionof the change propagation process.

Fig. 6 shows the SI* model for GP-2.1.1 and 2.2. The main actors are Global Plat-
form Environment (OPEN), Privileged application (App), Privileged Security Domain
(SD), and Issuer Security Domain (ISD). We only focus on the card lifecycle transition
to TERMINATED state that is the one impacted by the evolution. This transition is rep-
resented by the goal G5: in the GP-2.1.1 model the goal G5 is AND decomposed in two
subgoals G13 and G11’ the latter further decomposed into subgoals in goals G8’ and
G12’; in the GP-2.2 model the goal G5 has only G12 as subgoal (labeled in grey).

Fig. 7 represents the test model for GP-2.1.1 and GP-2.2: transitionsSetOpNopSD
andSetInNopSD(dotted arrows) are removed in GP-2.2 because they are associated
with the deleted goal G9’. The transitionsSetStatusNoAppandSetStatusNoApp(bolded
arrows) between the statesCard Lockedto Terminatedare added to the test model be-
cause in GP-2.2 requirement model the decomposition of G5 goal is changed.

The traceability link between the goals in Fig. 6 and the transitions in the test model
of Fig. 7 is illustrated in Fig. 8 representing the dynamic behavior of the transition
setStatusApp. In order to trace the transition to goals G5 and G12 , the OCL code is

10

Legend:Goals surrounded by dashed rectangles correspond to requirements that belong only toG-2.1.1 model, goals in grey
are new requirements related to the card life cycle introduced in version 2.2, and goalsin white are goals corresponding to
requirements that are present in both versions.

Fig. 6.Requirement Model for GP specs 2.1.1 and 2.2

Table 4.Test Suite for GP-2.1.1

Transition Covered Test Requirement
SetStatusForb Test1 G6, G

11′

SetStatusNopSD Test2 G5, G
8′

, G
11′

SetStatusSD Test3 G5, G
8′

, G
11′

, G
12′

annotated with the tags @REM G5 and @REM G12 referring the goals G5 and G12.
Based on the traceability link between goals and test model transitions we can gen-

erate the test suites for GP-2.1.1 and GP-2.2 that are illustrated respectively in Tab. 4
and Tab. 5. The tables only focus on the test cases for transitions fromCard Lockedto
Terminatedstates:SetStatusNopSDandSetStatusNopAppthat correspond tosetStatus
command performed by a Security Domain and Application withno Terminate priv-
ilege, SetStatusSDandSetStatusAppcorrespond tosetStatuscommand performed by
a Security Domain and Application with Terminate privilegeandSetStatusForbcorre-
sponding to a Security Domain and Application with no Card Locked privilege. For
example, since a new goal G12 has been added to the SI* model for GP-2.2 two new
test casesTest 3andTest 5covering G12 and its top goal G5 have been added to the test
suite.

11

!"#$%&'(")*+'#),-./0")* !"#$%&-./0")
!"#!#$#%&'(()

1"(1('(2314*

!"#!#$#%&*+('(()

1"(567.614*
1"(1('(238.#9*

-./0")-./0")+'#) --56,:"');* <&%='>%?")* 1"/2#")* !"#$%&-
!"#!#$#%&'((!"#!#$#%&'((!"

!"#!#$#%&*+('((

-./0")+'#) -+)#")>%?"):"'); !"#$%&-./0")

1"(1('(2314

14
1"(1('(238.#9

+'#),,-,:"'); >%?") 1"/2#"))))

1"(1('(2314*

1"(1('(23@66*

1"(1('(2314* 1"(1('(2314* 1"(1('(2314*

1"(567.614

56,

14

,

1"(<&7.614*

1"(1('(237.614*
117.614*

56 :::56

117.614 117.614*

<&%='><&%='>'>

4

<&%='<&%='

117.614 117.614*

1"/2#1"/2#1"/2#

117.6144

Legend: Dotted arrows correspond to transitions that were part of GP 2.1.1 test model and has been removed in the model
of GP 2.2, bolded arrows represent new transitions, dashed arrows correspond to modified transitions, while full arrows
correspond to transitions not impacted by evolution of requirements.

Fig. 7.Test Model for GP specifications 2.1.1 and 2.2

Legend: OCL code for the transitionsetStatusAppfrom CARD-LOCKED to TERMINATED requested by an Application
with cardTerminate privilege. The code is annotated with the identifiers of the goals G5 (@REM G5) and G12 (@REM G12)
covered by the test casesTest 3andTest 5.

Fig. 8. OCL code for SetStatus APDU command setting card state to TERMINATED

With respect to the completion of the change propagation process, we can see that
the changes in the card life cycle related to the state TERMINATED has been propa-
gated from the requirement model to the test model: two new test casesTest 4andTest
5 and two updated test casesTest 2andTest 3corresponding to G5 and its subgoals has
been included in the evolution test suite.Test 4andTest 5correspond to an Application
executingsetStatuscommand without and with Terminate privilege respectively, while
Test 2andTest 3are related to the execution of thesetStatuscommand performed by a
Security Domain without and with Terminate privilege.

8 Related Works

Change management is well known for being a difficult and costly process. However,
only some requirement engineering proposals provide support for handling change
propagation and for change impact analysis. Goal-orientedapproaches such as KAOS,

12

Table 5.Test Suite for GP-2.2

Transition Covered Test Requirement Status
SetStatusForb Test1 G6, G11 Re-executed

SetStatusNopSD Test2 G5, G8, G11 Updated
SetStatusSD Test3 G5, G8, G12, G15, G16 Updated

SetStatusNopApp Test4 G5, G11, G15 New
SetStatusApp Test5 G5, G12, G15, G16 New

Secure Tropos, and Secure i* [24, 11, 18] provide good support for change propagation
because they are based on goal models which explicitly show relationships and depen-
dencies between goals, and also support the modeling and theanalysis of dependencies
between agents. Tanabe et al. [22] propose an approach to requirements change man-
agement that supports version control for goal graphs and impact analysis of adding
and deleting goals.

UMLsec [15] is a model-based approach to security engineering which supports
change impact analysis by using model-checking and theoremproving techniques.

Problem-oriented approaches also support change impact analysis to some extent.
Haley et al. [13] use argument satisfaction as a way of verifying that a specification
satisfies a requirement in a given context. Lin et al. [16] do not provide explicit support
for change impact analysis, but this can be achieved by usingproblem analysis when
new security problems are identified.

Chechik et al. [4] propose a model-based approach to propagate changes between
requirements and design models that utilize the relationship between the models to
automatically propagate changes. Hassine et al. [14] present an approach to change
impact analysis that applies both slicing and dependency analysis at the Use Case Map
specification level to identify the potential impact of requirement changes on the overall
system. Lin et al. [17] propose capturing requirement changes as a series of atomic
changes in specifications and using algorithms to relate changes in requirements to
corresponding changes in specifications.

With respect to change management in test engineering, several works about regres-
sion testing have been proposed.There are two kinds of regression testing:code-based
regression testing andspecification-basedregression testing.

Code-based testing is limited to unit testing, and is mainlyapplied to concurrent
programs ([7]). At program level, in [6], the authors describe how to select a tests’
subset to be used for regression testing. This subset is defined by using data coverage
of the test w.r.t. the changes that occurred in a program.

In the specification-based regression testing field, a variety of techniques can be
found, based on various selection criteria, such as requirement coverage [5]. In [23] the
authors use EFSM models for safe regression technique basedon dependence analysis.
They select test cases and compute the regression test suiteby identifying three types
of elementary modifications applicable to a machine (addition, deletion, modification
of a transition). Our approach is grounded on these principles, but improves them by
keeping the test history. In addition, we consider three test suites fulfilling different pur-
poses. In [8] the authors propose a methodology to identify impacted part of the model.
A list of all depending operations is created for each operation modification. They iden-
tify all parts of dynamic UML diagrams in which the behaviourof this operation can

13

be found. This approach can be seen as a variation of the approach proposed here, that
does necessarily consider statecharts diagrams. The authors present in [21] a regression
testing approach based on Object Method Directed Acyclic Graph (OMDAG) using
class diagrams, sequence diagrams and OCL code. They consider that a change in a
path of the OMDAG affects one or more test cases associated tothe path. They classify
changes as NEWSET, MODSET and DELSET, which can be identified as the elemen-
tary modifications we consider. In [20] a model-based selective regression technique is
described, based on UML sequence diagrams and OCL code used to describe the sys-
tem’s behavior. In [3] the author describe a regression testing method using UML class,
sequence diagrams and use case diagrams. Changes in actionsare collected by observ-
ing sequence diagrams, while changes in the variables, operations (OCL), relationships
and classes are collected by comparing class diagrams.

9 Conclusion and Future Works

In this paper we have proposed a novel framework for managingthe mutual impact
of changes happening at requirement and testing models level. The key features of the
framework aremodel-based traceabilityby orchestrationandseparation of concerns
between the requirement and the testing domain. Separationof concern allows the re-
quirement engineer and the test engineer to cooperate by only sharing a minimal set of
concepts which is theinterfacebetween their respective change management processes.
The processes areorchestratedin the sense that when a change affects a concept of the
interface, the change is propagated to the other domain.

We are planning to extend the framework in order to support the semi-automatic
propagation of changes between the requirement and testingmodels by means of incre-
mental transformation rules.

Acknowledgment

This work was partly supported by the project EU-FP7-FET-IP-SecureChange (http:
//www.securechange.eu)

References

1. Global platform specification. http://www.globalplatform.org, May, 2011.
v.2.1.1 available in March’03 and v.2.2 available in March’06.

2. Y. Asnar, P. Giorgini, and J. Mylopoulos. Goal-driven risk assessment in requirements engi-
neering.REJ, pages 1–16, 2011.

3. L. Briand, Y. Labiche, and G.Soccar. Automating impact analysis and regression test selec-
tion based on uml designs. InProc. of ICSM ’02, page 252, 2002.

4. M. Chechik, W. Lai, S. Nejati, J. Cabot, Z. Diskin, S. Easterbrook, M.Sabetzadeh, and
R. Salay. Relationship-based change propagation: A case study. InProc. of MISE’09, pages
7–12. IEEE Press, 2009.

5. P. K. Chittimalli and M. J. Harrold. Regression test selection on system requirements. In
Proc. of the 1st India Soft. Eng. Conf. (ISEC’08), pages 87–96. ACM, 2008.

14

6. P. K. Chittimalli and M. J. Harrold. Recomputing coverage information toassist regression
testing.TSE, 35(4):452–469, 2009.

7. I. S. Chung, H. S. Kim, H. S. Bae, Y. R. Kwon, and D. G. Lee. Testing of concurrent
programs after specification changes. InProc. of ICSM ’99, page 199, 1999.

8. D. Deng, P. C. Y. Sheu, T. Wang, and A. K. Onoma. Model-based testing and maintenance.
In Proc. of ISMSE’04, pages 278–285. IEEE Press, 2004.

9. E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon. Selectivetest generation method for
evolving critical systems. InREGRESSION’11. IEEE Press, 2011.

10. E. Fourneret, F. Bouquet, F. Dadeau, and S. Debricon. Selective test generation method for
evolving critical systems. InProc. of ICST’11, 2011.

11. P. Giorgini, F. Massacci, J. Mylopoulos, and N. Zannone. Requirements engineering for trust
management: model, methodology, and reasoning.IJIS, 5(4):257–274, 2006.

12. R. Haenni and N. Lehmann. Probabilistic argumentation systems: a new perspective on the
dempster-shafer theory.International Journal of Intelligent Systems, 18(1):93–106, 2003.

13. C. Haley, R. Laney, J. Moffett, and B. Nuseibeh. Security requirements engineering: A
framework for representation and analysis.TSE, 34:133–153, 2008.

14. J. Hassine, J. Rilling, and J. Hewitt. Change impact analysis for requirement evolution using
use case maps. InProc. of the 8th Int. Workshop on Principles of Soft. Evolution, pages
81–90. IEEE Press, 2005.

15. J. Jurjens.UMLsec: Extending UML for Secure Systems Development. Springer Verlag,
2002.

16. L. Lin, B. Nuseibeh, D. Ince, M. Jackson, and J. Moffett. Introducing abuse frames for
analysing security requirements. InProc. of RE’03, pages 371–372, 2003.

17. L. Lin, S. J. Prowell, and J. H. Poore. The impact of requirementschanges on specifications
and state machines.Softw. Pract. Exper., 39:573–610, April 2009.

18. L. Liu, E. Yu, and J. Mylopoulos. Security and privacy requirements analysis within a social
setting. InProc. of RE’03, pages 151–161, 2003.

19. S. Microsystems. Runtime environment specification. Java Card
TM

platform, Connected
edition. Specification 3.0, 2008.

20. L. Naslavsky, H. Ziv, and D. J. Richardson. Mbsrt2: Model-based selective regression testing
with traceability. InProc. of ICST’10, pages 89–98. IEEE Press, 2010.

21. O. Pilskalns, G. Uyan, and A. Andrews. Regression testing uml designs. In Proc. of
ICSM’06, pages 254–264, 2006.

22. D. Tanabe, K. Uno, K. Akemine, T. Yoshikawa, H. Kaiya, and M. Saeki. Supporting re-
quirements change management in goal oriented analysis. InProc. of RE’08, pages 3–12,
2008.

23. H. Ural, R. L. Probert, and Y. Chen. Model based regression test suite generation using
dependence analysis. InProc. of the 3rd Int. Workshop on Advances in Model-based testing,
pages 54–62, 2007.

24. A. van Lamsweerde. Elaborating security requirements by construction of intentional anti-
models. InProc. of ICSE’2004, pages 148–157, 2004.

25. W. Wu and T. Kelly. Combining bayesian belief networks and the goal structuring notation to
support architectural reasoning about safety. In F. Saglietti and N. Oster, editors,Computer
Safety, Reliability, and Security, volume 4680 ofLecture Notes in Computer Science, pages
172–186. Springer Berlin / Heidelberg, 2007.

15

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 85/136

APPENDIX E

Noname manuscript No.
(will be inserted by the editor)

Dealing with Known Unknowns: A Goal-based
Approach for Understanding Complex Systems
Evolution ?

Fabio MASSACCI, Le Minh Sang TRAN

Università degli Studi di Trento, I-38100 Trento, Italy
e-mail: surname@disi.unitn.it

The date of receipt and acceptance will be inserted by the editor

Abstract Enterprises must cope with evolution to addresses changing business
objectives, changing regulations and changing threats. In many cases such changes
are not completely unknown: the ongoing discussion of a standard body can show
that 2-3 proposals might emerge, albeit might not be clear which one will finally
win.

In this paper we tackle the fundamental issue of modeling and reasoning about
the future evolution of the business and security goals of an organization in pres-
ence of uncertainty of known outcomes.

This work describes a generic approach explicitly representing goal evolutions
in terms of controllable and observable rules and in which probability estimates
can be validated by a game-theoretic semantics between stakeholders and nature.

In this setting it is important to identify which are the business activities that
must be implemented to guarantee the best chances of success (maximum belief)
or minimize the risk of wasting money (residual risk). We specialize the set-up
for a goal-based language where we provide a graphical language but also effi-
cient algorithm that allows to reason about the unrolling of probabilities without a
combinatorial explosion.

In order to illustrate the applicability of the approach we discuss a case study
from Air Traffic Management for the deployment of AMAN in air-traffic control
procedures.

? It is an extended and revised version of [38]. It is partly supported by the Euro-
pean Commission under projects EU-FET-IP-SECURECHANGE, and EU-IP-NESSOS.
We would like to thank F. Paci at the University of Trento, A. Tedeschi, V. Meduri, M.
Felici, S. Pozzi at DBL Srl and the other participants to the ATM validation sessions for
many useful comments. The numbers presented in this paper are only provided as examples
and do not represent in any way the opinion of the experts’ organizations.

2 F. Massacci and L.M.S. Tran

Key words enterprise modeling, software engineering, observable and control-
lable rules

1 Introduction

“...There are known unknowns: that is to say, there are things
that we now know we don’t know...”

— Donald Rumsfeld, United States Secretary of Defense

The term software evolution has been introduced by Lehman in his work on laws
of software evolution [17, 18], and was widely adopted since 90s. Recent studies
in software evolutions attempt to understand causes, processes, and effects of the
phenomenon [2, 14, 16]; or focus on the methods, tools that manage the effects of
evolution [19, 29, 36].

In the domain of software systems [12, 15, 27, 33, 42], evolution refers to a
process of continually updating software systems in accordance to changes in their
working environments such as business requirements, regulations and standards.
While some evolutions are unpredictable, many others can be predicted albeit with
some uncertainty (e.g. a new standard does not appear overnight, but is the result
of a long process).

It is now widely accepted that in order to fully understand an enterprise system
we can no longer consider simply its IT structure. We face a socio-technical system
[31] “that involve complex interactions between software components, devices and
social components (people or groups of people), not as users of the software but
as players engaged in common tasks” [11].

This is particularly true for large systems of systems such as the Air Traffic
Management “system” (ATM for short). Modelling the key objectives on an Air
Traffic Control Organization requires to include both human and system actors
and, before digging into detailed software features, requires the ability to reason
about high-level strategic assignments of goals to those human and system actors.

In the ATM setting changes are often organizational changes that involves
complex subsystems as a whole. For example, the SESAR Open Sky initiative
foresee the introduction of an Arrival Manager (a system) in order to replace
some of the activities by the Sequence Manager (a human). Still this system re-
lies on decisions by other humans. Evolution is therefore not represented in terms
of software features but rather in assigning high-level mission critical goals such
as “maintain aircraft separation” to different actors.

The potential evolutions of such large and complex system is not completely
unpredictable, as it often involves significant multi-party (or even multi-state) ne-
gotiations. Stakeholders with experience and high-level positions have a good vis-
ibility of the likely alternatives, the possible but unlikely solutions, and the politi-
cally impossible paths. For example, the Federal Aviation Authority (FAA) docu-
ment of the System Wide Information Management (SWIM) for Air Traffic Man-
agement (ATM) lists a number of potential technical alternatives that depends from
high-level decisions (e.g., the existence of an organizational agreement for nation-
wide identity management of SWIM users).

Dealing with Known Unknowns: A Goal-based Approach 3

Therefore, it is possible to model the evolution of mission-critical require-
ments at enterprise level when such evolution is known to be possible, but it is
unknown whether it would happen: the known unknown. We target at capturing
what Loucopoulous and Kavakli [21] identified as the knowledge shared by multi-
ple stakeholders about “where the enterprise is currently”, “where the enterprise
wished to be in the future”, and “alternative designs” for the desired future state.

Unfortunately, an ATM organization cannot wait that the unknowns becomes
known. The process of tendering and organizational restructuring requires a signif-
icant amount of time and planning. Therefore decision makers at high-level must
essentially bet on the final organizational solution and possibly minimize the risks
that the solutions turns out to be wrong.

In this respect it is important to provide a sound quantitative analysis which
was identified by Dalal et al. in [8] as one of the current weaknesses of enterprise
modelling systems.

1.1 The Contribution of This Paper

Our ultimate goal is to support the decision maker in answering such a ques-
tion “Given these anticipated evolutions, what is a the solution to implement an
evolution-resilient system?”. By a solution we mean here either a software or an
organizational solution such as assigning a task to an actor instead of another.

To address this objective we set up a global framework for modeling and rea-
soning on evolution in socio-technical systems as follows:

– we introduce the idea of modelling evolutions in terms of two kinds of evo-
lution rules: controllable and observable rules that are applicable to arbitrary
enterprise and high-level requirements models (from problem frames to goal
models);

– we identify a game-theoretic based explanation for probabilities of an observ-
able evolution in terms of a game between reality (that finally decides what is
happening), stakeholders (who provide likelihood information on outcomes)
and designers (who bet against the odds);

– we provide two quantitative metrics to help the designer in deciding optimal
things to implement for the system-to-be;

– for the particular case of goal models we provide an optimal algorithm for cal-
culating such metrics in case of complex scenarios with multiple alternatives;

– also briefly describe a graphical notation for representing such evolution rules
that has been validated in a number of sessions with ATM experts.

The rest of this paper is organized as follows. In the subsequent section (§2) we
describe a case study in the field of Air Traffic Management, by which examples
are extracted to illustrate our approach. Next, we discuss the basic idea of our
generic approach (§3) to deal with known unknown. Then we instantiate it to a
concrete syntax based on goal models that we have used for validation with ATM
experts (§4). We additionally describe a game-theoretic semantics to account for
the evolution probability (§5). The paper is then continue by a discussion of two

4 F. Massacci and L.M.S. Tran

quantitative metrics, max belief and residual risk (§6), to support decision makers
in selecting optimal configuration for the enterprise model in practical scenarios
of evolution (§7). For our concrete instantiation with goal models we also present
an incremental algorithm to calculate the two proposed metrics (§8). Finally, we
discuss related works (§9) and conclude the paper (§10).

2 Air Traffic Management Case Study

In order to make the discussion more concrete we present here a case study on the
Air Traffic Management (ATM) system that we have carried out in the framework
of the EU project SECURECHANGE [28]. The focus in this paper is the deploy-
ment of the Arrival Manager (AMAN) into an air traffic control room. AMAN,
DMAN (Departure Manager), and SMAN (Surface Manager) are queue manage-
ment tools, introduced by the SESAR Open Sky initiative. These support tools will
substitute some human activities to deal with increasingly traffic loads at terminals,
while still guaranteeing better performance, efficiency, and safety.

As the name suggests, the AMAN is a ground-based tool suggesting to the Air
Traffic Controllers (ATCO) an optimal arrival sequence of aircrafts and providing
support in estimating the optimal aircraft approach route. The critical mission of
AMAN is to support ATCO to manage the arrival traffic safely and efficiency, i.e.
by maintaining an appropriate separation between aircrafts. To achieve this high
level objective, several processes and activities are performed. Here we only focus
on two of them, applying an optimal arrival sequence, and collaborating with
other units.

AMAN calculates an optimum arrival sequence considering many constraints
such as flight profiles, aircraft types, airspace and runway condition, inbound flow
rate, as well as meteorological conditions. The final sequence is approved by AT-
COs. Then, the AMAN generates various kinds of advisories for ATCO to send to
pilots e.g., time to lose or gain, top-of-descent, track extension, while their execu-
tion is continuously monitored to react to eventual violations. The sequence and
other relevant data are exchanged with adjacent sectors to improve collaboration
and reduce conflicts.

Fig. 1 summarizes these objectives in a goal model. We will define it formally
in later section but the intuitive understanding is that in order to achieve the goal
depicted in a node we need to achieve the goals described in its children. In the
ATM domain they are sometimes called influence diagrams.

The ATM operational environment, however, is continuously evolving due to
numerous causes such as the rapidly increasing of traffic load, the new perfor-
mance and safety standards, as well as the need of tighter collaboration between
ATM systems. To efficiently cope with evolutions, potential changes must be fore-
seen, for instance:

– AMAN should support what-if-probing and online simulation.
– AMAN should support trajectory prediction, i.e. Expected Time of Arrival
– AMAN should support advanced advisories generation: heading, speed in-

structions.

Dealing with Known Unknowns: A Goal-based Approach 5

Fig. 1 Goal model of the AMAN case study without potential evolutions.

– AMAN should be interoperable and optimized at European level, by support-
ing SESAR 4D operations such as Controlled Time of Arrival (CTA) and Re-
quired Time of Arrival (RTA) negotiation.

– AMAN should be able to exchange with DMAN, SMAN in a same and other
airports.

– AMAN should integrate with other monitoring and conflict detection tools
such as Monitoring Aids (MONA), Medium Term Conflict Detection (MTCD).
These objectives are not compulsory at current, but they might be required in

future. A cheap implementation of AMAN ignoring all potential evolutions might
cause a gigantic cost to update deployed systems. However, implementing all of
them can be a waste of money as we are not sure they are really necessary.

In subsequent sections we describe our approach to deal with these known
unknown in fulfilling the overall ATM enterprise objectives.

3 Controllable and Observable Evolutions

To improve the readability of the paper, Table 1 summarizes important terms used
throughout this work, which can be formally or informally defined later in the text.

Enterprise goals, mostly in textual format, express the enterprise mission-critical
objectives. The achievement of each of objectives is a requirement that all future
solutions must meet. They can be captured by specific languages/toolsets of en-
terprise modeling such as IDEF [32], IEM [22], GRAI/GIM [9], ARIS/EPC [34],
UEML [39], software oriented languages such as UML or more research-oriented
languages such as KAOS or i* [41]. These models comprise various kinds of en-
tities depended on the modeling languages and relations among these entities. For
instance: KAOS uses ‘goal’ to represent requirements, whereas, UML uses ‘use-
case’ for similar purposes.

Toward to a solution for the evolution of enterprise objectives without sticking
into any specific languages, we define an enterprise model at the meta-level point
of view as follows:

6 F. Massacci and L.M.S. Tran

Table 1 Notions and concepts

Term Notion Definition

Enterprise model EM is a set of entities and relations to model enterprise
objectives (or system requirements).

Subpart SM is a sub set of an enterprise model.
SMα is the original model of the αth observable rule.
SMα

i is the ith evolution possibility of the αth observable
rule.

SMα
i,j is the jth design alternative of SMα

i .
Enterprise model evo-
lution
(evolution)

is a set of changes in the enterprise model, including
addition, remove of objectives. Objective modifica-
tion is treated as a series of remove and delete.

Evolution rules ro, rc is a set of evolution possibilities.
roα is the αth observable rule.
rcαi is the controllable rule applied to the ith possibility

of the observable rule roα
Evolution possibility
(possibility)

is a potential evolution. In a same evolution rule, only
one possibility is able to happen.

Evolution probability p is the belief of stakeholder about the likelihood by
which an evolution possibility will happens.

Design alternative
(alternative)

DA is a set of elements of an enterprise model that are
necessary to fulfil all objectives.

Design alternative set SDA(C) is a set of design alternatives that are supported by a
configuration C.

Final choice
(configuration)

C is a set of elements in the enterprise model that are
chosen to implement an enterprise system. A config-
uration can comprise one or more design alternatives.

Smaller words in parentheses are short names (or aliases) of the terms in normal text.

Definition 1 (Enterprise model) An enterprise model EM is a tuple 〈E,R〉 where
E is set of entities, and R is set of relations among them.

Evolution of enterprise objectives refers to changes of objectives of an enter-
prise, basically falling into two categories, controllable evolution and observable
evolution. This justification is based on the factor (both human and non-human
factor) that initiate the changes.

– Controllable evolutions are subject to system designers who intentionally change
the system design in order to fulfil high level enterprise objectives. In other
words, they are designers’ moves to identify design alternative to implement
an enterprise system. Later, the most “optimal” alternative is chosen to the
next development phases. Such decision are based on tool-support analyses
(both qualitative and quantitative) and expertise experiences.

– Observable evolution, whereas, are out of control of “inside people” i.e. who
directly involve in the development process such as domain experts, designers
and so on. However, these evolutions can be forecasted with a certain level of
confidence. As the impact of the observable evolutions, new objectives are in-

Dealing with Known Unknowns: A Goal-based Approach 7

troduced, or objectives’ status is changed e.g., from ‘optional’ to ‘compulsory’,
or from ‘compulsory’ to ‘obsoleted’.

In an evolution-aware developing process, the selection of optimal design al-
ternative(s) for the implementation of an enterprise system should carefully take
into account observable evolutions, otherwise it may be incapable to support the
enterprise objectives in future.

To support decision making in dealing with the evolution of enterprise ob-
jectives, these two kinds of evolutions are incorporated into enterprise models in
terms of evolution rules. The basic idea of evolution rules is to capture the snap-
shots of enterprise objectives before and after evolutions. Evolutions rules are for-
mally defined as follows:

Definition 2 (Controllable rule) A controllable rule rc is a set of tuples 〈EM,EMi〉
that consists of an original model EM and its possible design alternative EMi.

rc =
[
i

n
EM

∗−→ EMi

o
Example 1 (Controllable rule) Consider again Fig. 1, the objective g5−Data exchanged

is refined into only one lower level objective g9−Data exchanged with adjacent sectors.
However an organization might chose to integrate the DMAN in the process and
thus might choose between two other goals g12−Basic data exchanged with DMAN and
g13−Advanced data exchanged with DMAN.

Definition 3 (Observable rule) An observable rule ro is a set of triples 〈EM, pi, EMi〉
that consists of an original model EM and its potential evolution EMi. The prob-
ability that EM evolves to EMi is pi. All these probabilities should sum up to one.

ro =
[
i

n
EM

pi−→ EMi

o

Example 2 (Observable rule) Consider again Fig. 1, the objective g5−Data exchanged

is refined into only one lower level objective g9−Data exchanged with adjacent sectors.
One potential evolution for is that a regulatory body requires that the organization
should also achieve both goal g12−Basic data exchanged with DMAN and goal g13−Advanced

data exchanged with DMAN albeit for different functionalities. If this possibility actually
happens the organization should meet g9, g12, g13 in order to meet g5. However, the
discussion in the regulatory body is still quite open and another option might be
to actually leave partners to chose whether to impose g9−Data exchanged with adjacent

sectors and g12−Basic data exchanged with DMAN and leave operators the choice of imple-
menting g9 and g13−Advanced data exchanged with DMAN. This latter option, which com-
bines the one from Example2, is denoted by EM1 as it is the most likely outcome,
the former we denote it by EM2. Obviously, there is also another possibility: EM
might not evolve and therefore remain unchanged (decision of regulatory body
is post-poned after first deployment trials of DMAN). These possibilities exclu-
sively happen with some uncertainties. Thus, the observable rule is would be the
following one.

ro1 =

EM

p1−−→ EM1, EM
p2−−→ EM2, EM

1−p1−p2−−−−−−−→ EM

ff

8 F. Massacci and L.M.S. Tran

Example 3 (Controllable rule) In previous example, EM1 has two possible design
alternatives as g5 is either refined into {g9, g12}, or {g9, g13}. Let’s name these goal
sets EM1,1 and EM1,2, respectively. Then, the controllable rule is as follows.

rc1 =
n
EM1

∗−→ EM1,1, EM1
∗−→ EM1,2

o
Models incorporating evolution rules are called evolutionary models.

4 Specialization of the Approach on Goal-Based Model

In order to be concretely used by the stakeholders, the proposed approach for a
generic enterprise model with evolution rules needs to be instantiated to a concrete
syntax. Our choice is to use goal models. The first reason is obviously the expertise
that we could find at our own university. The second, possibly more important,
is that models for representing goals and objectives are well known in the ATM
domain (possibly under the name of “influence diagrams”).

In order to make our syntax concrete, some notions and concepts discussed
in generic sense are rephrased in the context of goal-based language. We further
discuss the visual presentation of evolution rules into goal models.

Basically, the general idea of goal-based approaches is the employment of goal
notion to study enterprise objectives or goals. Goals are refined (or decomposed)
into many subgoals in the sense that parent goal can be achieved if either all sub-
goals are fulfilled (AND-decomposition). In this manner, goals are recursively de-
composed until operational goals (or tasks) that can be done by either software
systems or humans. Hence a goal-based enterprise model can be formally written
as follows.

Definition 4 (Goal-based enterprise model) A goal-based enterprise model is a
tuple 〈G,De〉 in which G is a set of goals, and De ⊂ G × 2G is a set of AND-
decomposition relations between goals.

Traditional goal models also include the notion of (OR-decomposition) where
the same goal can be fulfilled in different ways. We will not use in this setting or-
decompositions as they are better characterized by design alternatives in terms of
controllable rules (and better understood in this form by experts). A goal model it-
self contains several design alternatives. Each design alternative is combination of
all different ways an arbitrary goal is decomposed. Since a goal is achieved when
all its refined goals is fulfilled, a final choice for the various design alternatives can
also be represented by the set of leaf goals required to fulfil all top goals.

The evolutionary goal model is intuitively a specification of the evolutionary
enterprise model aforemention, where the controllable rules are implicitly repre-
sented by the different ways in which goals can be decomposed. The evolution-
dependent relations between observable rules are also implied based on the de-
composition. If rule ro1, ro2 respectively apply to goal g1, g2, and g2 is a (direct or
in direct) child of g1, then ro2 is evolution-dependent to ro1. We additionally define

Dealing with Known Unknowns: A Goal-based Approach 9

(a) AMAN Evolution 1

(b) AMAN Evolution 2

The right hand corner of the two models corresponds to the different evolutions of the
model that we have described in Example 2.

Fig. 2 Alternative Evolutions for AMAN Deployment.

a subpart of a goal model is an arbitrary goal and all its directly and indirectly chil-
dren. The evolutionary goal model, therefore, is a tuple of an original goal model
and a set of observable rules, 〈EM,Ro〉.

It is not feasible to represent all evolutions in the same diagram. In order to un-
derstand the level of complexity we show in Fig. 2 two alternative models in which
a number of observable evolutions rules have been triggered. In comparison with
Fig. 1 the new goals have been marked in green. It is clearly impossible to identify
the two simple evolution rules that we have described. These evolutions must be
represented as local evolutions of the corresponding fragment of the models.

Here we outline how evolution rules are visualized in an evolutionary goal
model, more discussion can be found in a technical report [37]. Fig. 3 illustrates
two graphical representations of an observable rule, tree-like and swimlane-based,
taken from Example 2.

Fig. 3(b), meanwhile, describes the swimlane-based representation where orig-
inal model is on the left side, and all the possible evolutions are located next to the
right. Evolution probability is indicated by the label and the shade of swimlanes.

10 F. Massacci and L.M.S. Tran

42%

46%

12%

[5] Data exchanged

[9] Data
exchanged with
adjacent sectors

DMAN

[5] Data exchanged

[12] Basic data
exchanged with

DMAN

[13] Advanced
data exchanged

with DMAN

[9] Data
exchanged with
adjacent sectors

[5] Data exchanged

[12] Basic data
exchanged with

DMAN

[13] Advanced
data exchanged

with DMAN

[9] Data
exchanged with
adjacent sectors

(a) Tree-like representation

12% 42% 46%

[5] Data exchanged

[9] Data
exchanged with
adjacent sectors

[5] Data
exchanged

[9] Data
exchanged with
adjacent sectors

[13] Advance data
exchanged with

DMAN
[12] Basic data
exchanged with

DMAN

[5] Data
exchanged

[9] Data
exchanged with
adjacent sectors

[13] Advance data
exchanged with

DMAN
[12] Basic data
exchanged with

DMAN

(b) Swimlane-based representation

Fig. 3 Visualization of evolution rules.

The tree-like representation, Fig. 3(a), basically is a tree-like directed graph,
where a node represent a subpart in the goal model. The directional connection
between two nodes means the source node evolves to target node. In other words,
the source node is the original model (or subpart), and target node is the evolved
model (subpart). A connection is labeled with an evolution probability pi. In two
validation sessions with ATM experts the tree-like model was found more intuitive
and we have therefore decided to implement it in our modelling CASE tool.

5 Game-Theoretic Approach Accounting for Evolution Probability

Our notion of observable rules includes an associated probability. Probabilities are
often taken for granted by engineer and scientists but in our setting it is important
to understand the exact semantics of this notion.

Basically, there are two broad categories of probability interpretation, called
“physical” and “evidential” probabilities. Physical probabilities, in which frequen-
tist is a representative, are associated with a random process. Evidential probabil-
ity, also called Bayesian probability (or subjectivist probability), are considered to
be degrees of belief, defined in terms of disposition to gamble at certain odds; no
random process is involved in this interpretation.

To account for probability associated with an observable rule, we can use the
Bayesian probability as an alternative to the frequentist because we have no event
to be repeated, no random variable to be sampled, no issue about measurability
(the system that designers are going to build is often unique in some respects).
However, we need a method to calculate the value of probability as well as to
explain the semantic of the number. Since probability is acquired from the re-
quirements/objectives eliciting process involving the Domain Experts, we propose
using the game-theoretic method in which we treat probability as a price. It seems
to be easier for Domain Experts to reason on price (or cost) rather than probability.

The game-theoretic approach, discussed by Shafer et al. [35] in Computational
Finance, begins with a game of three players, i.e. Forecaster, Skeptic, and Real-

Dealing with Known Unknowns: A Goal-based Approach 11

ity. Forecaster offers prices for tickets (uncertain payoffs), and Skeptic decides a
number of tickets to buy (even a fractional or negative number). Reality then an-
nounces real prices for tickets. In this sense, probability of an event E is the initial
stake needed to get 1 if E happens, 0 if E does not happen. In other words, the
mathematics of probability is done by finding betting strategies.

Since we do not deal with stock market but with the design of evolving enter-
prise goals, we need to adapt the rules of the game. Our proposed game has three
players: Domain Expert, Designer, and Reality. For the sake of brevity we will use
“he” for Domain Expert, “she” for Designer and “it” for Reality. The sketch of this
game is denoted in protocol 1.

Protocol 1
Game has n round, each round plays on a software Ci
FOR i = 1 to n

Domain Expert announces pi
Designer announces her decision di: believe, don’t believe
If Designer believes

Ki = Ki−1 +Mi × (ri − pi)
Designer does not believe

Ki = Ki−1 +Mi × (pi − ri)
Reality announces ri

The game is about the desire of Domain Expert to have a software C. He asks
Designer to implement C, which has a cost of M$. However, she does not have
enough money to do this. So she has to borrow money from either Domain Expert
or a bank with the return of interest (ROI) p or r, respectively.

Domain Expert starts the game by announcing p which is his belief about the
minimum ROI for investing M$ on C. In other words, he claims that r would be
greater than p. If M equals 1, p is the minimum amount of money one can receive
for 1$ of investment. Domain Expertshows his belief on p by a commitment that he
is willing to buy C for price (1 + p)M if Designer does not believe him and borrow
money from someone else.

If Designer believes Domain Expert, she will borrow M from Domain Expert.
Later on, she can sell C to him for M(1 + r) and return M(1 + p) to him. So, the
final amount of money Designer can earn from playing the game is M(r − p).

If Designer does not believe Domain Expert, she will borrow money from a
Bank, and has to return M(1 + r). Then, Domain Expert is willing to buy C with
M(1 + p). In this case, Designer can earn M(p− r).

Suppose that Designer has an initial capital of K0. After round i-th of the game,
she can accumulate either Ki = Ki−1 +M(r−p) or Ki = Ki−1 +M(p−r), depend on
whether she believes Domain Expert or not. Designer has a winning strategy if she
can select the values under her control (the M$) so that her capital never decrease,
intuitively, Ki >= Ki−1 for all rounds.

The law of large numbers here corresponds to say that if unlikely events happen
then Designer has a strategy to multiply her capital by a large amount. In other
words, if Domain Expert estimates Reality correctly then Designer has a strategy
for avoid overshooting her budget.

12 F. Massacci and L.M.S. Tran

5%5%
5% 45%

RM

RM1

A
RM2

A
RM11

A
RM12

B…....

Fig. 4 The long-tail problem.

6 Quantitative Metrics: Max Belief and Residual Risk

As consequence of actual occurences of evolutions possibilities, a final design
choice may or may not be able to fulfil the enterprise’s objectives. In order to
select among the various alternatives we need a quantitative metric that can guide
the decision maker.

The first intuitive measure is the total probability that a final configuration
survived, called Total Belief : the sum of probabilities of all possibilities where
the final choice fulfill the enterprise’s objectives. If complexity is not a problem
it is also easy to compute: just unroll all probabilities combining them into one
big observable rule. Then gather every possible model that (i) is resulting from the
evolution, (ii) includes the final design choice and (iii) fulfils the root objectives of
the enterprise.

Unfortunately, this measure might lead to a severe long-tail problem. This
problem, firstly coined by Anderson [1], is present when a larger than normal pop-
ulation rests within the tail of the distribution. A long-tail example is depicted in
Fig. 4 where an enterprise model EMmight evolve to several potential possibilities
with very low probabilities (say, eleven possibilities with 5% each), and another
extra possibility with dominating probability (say, the twelfth one with 45%).

Suppose that an element A appears in the first eleven possibilities, and an el-
ement B appears in the last twelfth possibility. Apparently, A is better than B due
to A’s total belief is 55% which is greater than that of B, say 45%. Arguing that A
is better than B or versa is still highly debatable. Ones might put their support on
the long tail [1], and ones do the other way round [10].

Our game semantics allows us to make an informed choice: at the end of the
day, only one possibility becomes effective (i.e. chosen by Reality). If we thus
consider every single possibility to be chosen, the twelfth one (45%) is the one
with the highest pay-off by the Domain Expert. The other possibilities offers a
substantial less chance of making money: Domain Expertwill only pay a 5% ROI
for any of the other possibilities. It is true that globally A might be chosen by any
of the 11 alternatives, but reality will not realized them all together. It will only
chose one and each of them only have a ROI of 5%. Choosing the largest ROI is
one of the possible alternatives.

However, we need to be careful since Designer must invest M to build B before
knowing whether it would pay off. So what is interesting for the Designer is a
measure of the risks that its choice might turn out to be sour. We are currently
investigating a number of alternatives. A possible solution is to consider the dual
of the MaxBelief and namely the MaxRisk as the highest chances of a possibility

Dealing with Known Unknowns: A Goal-based Approach 13

where the configuration is not useful. To be more conservative, in this paper we
consider as risk measure the complement of the Total Belief and namely the sum
of the total chances that a configuration would turn out to be utterly useless.

Building on the above considerations, we introduce two quantitative metrics:
Residual Risk1 and Max Belief as follows.

Max Belief (MaxB): of an configuration C is a function that measures the maxi-
mum belief supported by Domain Expert such that C is useful after evolution
happens.

Residual Risk (RRisk): of an configuration C is the complement of total belief
supported by Domain Expert such that C is useful after evolution happens.
In other words, residual risk of C is the total belief that C is not useful when
evolutions happen.

They offer two independent dimensions upon which a designer can chose.
Given an evolutionary enterprise model 〈EM, ro,rc〉, max belief and residual

risk can be formally defined as follows.

MaxB(C) , max

∀EM
pi−→EMi.EMi∈SDA(C)

pi

RRisk(C) , 1−
X

∀EM
pi−→EMi.EMi∈SDA(C)

pi
(1)

where SDA(C) is the set of design alternatives which a configuration C comprises
(or support), also called as design alternative set of a configuration C.

The residual risk, as discussed, is the complement of total belief. Hence, for
convenience, the Total Belief of C is denoted as:

RRisk(C) = 1−RRisk(C)

The selection between two configurations based on max belief and residual risk
is obvious: “higher max belief, and lower residual risk”. However, it is not always
a case that a higher max belief configuration has lower residual risk. Thus decision
makers should understand which criterion is more important. In this sense, these
metrics could be combined using weighted harmonic mean. Suppose that w1, w2

are weights of max belief and residual risk, respectively. The harmonic mean is
defined as follow.

H(C) =
w1 + w2

w1

MaxB(C)
+

w2

1−RRisk(C)

= (1 + β)
MaxB(C) · (1−RRisk(C))
β ·MaxB(C)−RRisk(C) + 1

where β = w1/w2 means max belief is β times as much important as residual risk.

1 One should not confuse this notion of residual risk with the one in security risk analysis
studies which is different in nature.

14 F. Massacci and L.M.S. Tran

DMANDMAN
AMANAMAN

AMAN1AMAN1

AMAN2AMAN2

DMAN1DMAN1

DMAN2DMAN2

ATM

SYSTEM

ATM

SYSTEM

(a) Multi-part evolution scenario

AMANAMAN
ATM

SYSTEM

ATM

SYSTEM

AMAN2AMAN2

AMAN1AMAN1

AMAN12AMAN12

AMAN11AMAN11

(b) Multi-step evolution scenario

The left (a) exemplifies a multi-part evolution, where a big ATM system has two separated subsystems (parts),
AMAN and DMAN, which may evolve independently. Meanwhile, the right (b) illustrates a multi-step scenario.
After AMAN evolves to AMAN1, it continues to evolve to either AMAN11 or AMAN12.

Fig. 5 Complex evolution scenarios.

7 More Complex Evolution Scenarios

In practice, evolutions can fall into one of two scenarios: multi-part and multi-step
(or combination of these scenarios).

The multi-part scenario indicates evolutions in different parts of a big enter-
prise model, as illustrated in Fig. 5(a). This is a case that a system comprises of sev-
eral subsystems which are relatively independent. For instance, in the whole ATM
system, the AMAN subsystem (Arrival Management System) is more or less inde-
pendent with the DMAN (Departure Management System) subsystem even though
they can exchange data. Thus AMAN can evolves independently with DMAN. We
call evolution in subparts of the model as local evolution.

The multi-step evolution scenario determines the case that the system is it-
eratively evolving. In Fig. 5(b), the AMAN subsystem of ATM, after evolving to
AMAN1, may continue to evolve to either AMAN11 or AMAN12. Suppose that the
evolution of AMAN to AMAN1 or AMAN2 is subject to an observable rule ro1;
and the evolution of AMAN1 to AMAN11 or AMAN12 is subject to an observable
rule ro2. The global evolution of AMAN, in this case, is a 2-step evolution. Obvi-
ously, ro2 can only be effective only if ro1 happens in the first step/phase, AMAN
−→ AMAN1. We call the relationship between ro1 and ro2 evolution-dependent
relationship, which are formally defined as follows.

Definition 5 (Evolution-dependent relation) Given two observable rules ro1 =Sn
EM

pi−→ EMi

o
and ro2 =

S
EM ′

pj−−→ EM ′j

ff
, the rule ro2 is evolution-dependent

to the rule ro1, denoted as ro1 i
 ro2 if there exists a possibility EM pi−→ EMi of ro1

such that EM’ is a subset (or equal) of EMi.

ro1
i
 ro2 ⇔ ∃EM

pi−→ EMi ∈ ro1.EM ′ ⊆ EMi (2)

To this end we define the evolutionary enterprise model that take into account
all complex evolution scenarios as follows.

Definition 6 (Evolutionary enterprise model) An evolutionary enterprise model
eEM is a quadruplet 〈EM,Ro,Rc, Dep〉 where:

Dealing with Known Unknowns: A Goal-based Approach 15

– EM is the original enterprise model,
– Ro is set of observable evolution rules.
– Rc is a set of controllable rules applying to the original enterprise model and

other evolved ones.
– Dep ⊆ Ro×Ro×N is a set of evolution-dependent relations between observable

rules.

Ro =
[

roα =
[

SMα
pαi−−→ SMα

i

ffff
Rc =

[n
rcαi =

[n
SMα

i
∗−→ SMα

ij

oo
Dep =

[n
roα

i
 roβ

o (3)

where SMα ⊆ EM ∨ ∃SMα′ p
α′
i−−→ SMα′

i .SMα ⊆ SMα′
i

The calculation of the max belief and residual risk for a given configuration
C on a given evolutionary enterprise model eEM is complicated by the need to
consider both multi-part and multi-step evolutions.

However, once we have defined a semantics for the basic set-up of probabil-
ities, we can now leverage on the mathematics behind the theory or probabili-
ties.Thus we can use the mechanisms of conditional probabilities for multi-step
evolution and of independent combination of events for multi-part evolution.

The max belief and residual risk of a given configuration C and an evolutionary
enterprise model eEM〈EM,Ro,Rc, Dep〉 are defined as follows.

MaxB(C) , max

∀(
V
α SM

α
pα
i−−−→SMα

i
).

S
α SM

α
i
∈SDA(C)

Pr

 ^
α

SMα
pαi−−→ SMα

i

!

RRisk(C) , 1−
X

∀(
V
α SM

α
pα
i−−−→SMα

i
).

S
α SM

α
i
∈SDA(C)

Pr

 ^
α

SMα
pαi−−→ SMα

i

! (4)

8 An Incremental Algorithm to Calculate Max Belief and Residual Risk

Developing an algorithm to calculate max belief and residual risk, as in Formula 4,
for an evolutionary goal model is not practical. With the heuristic assumption that
observable rules in different parts are independent we can efficiently eliminate
recursion by transforming the model into a suitable hypegraph and use efficient
hyperpath algorithms.

An evolutionary goal model is converted in to an evolutionary hypergraph as
follows.

Definition 7 (Evolutionary hypergraph) The hypergraph G〈V,E〉 of an evolution-
ary goal model 〈EM,Ro〉 is constructed as follows:

• For each goal g, create a goal node g.

16 F. Massacci and L.M.S. Tran

Round rectangles represent goal nodes, circles are compound nodes, and diamonds denotes
observable nodes. Goals with a same number refer to the same objective.

Fig. 6 The hypergraph of the case study described in §2 with evolution rules embedded.

• For each decomposition 〈g, Sg〉, create a compound node c. Then create a dotted
edge 〈c, g, 1〉 connecting c to g. For each goal g′ ∈ Sg, create a full edge 〈g′, c, 1〉
connecting g’ to c.

• For each observable rule
[

SMα
pαi−−→ SMα

i

ff
, create an observable node o.

Then create full edges
˙
o, gα, pαi

¸
where gα denotes the top goal of SMα.

This hypergraph has three kinds of nodes: goal node, observable node, and
compound node. These kinds of nodes orderly correspond to goals, observable
rules, and decomposition of goals. Besides, there are two kinds of edges: full edges
and dotted edges. The full edge connects an observable node or compound node to
another observable or goal node. The full edge connecting an observable node to
a goal node denotes a potential evolution possibility of the goal node. Therefore,
goal nodes connected to an observable node always have the same name, determin-
ing several potential evolution possibilities of the observable rule corresponding to
this observable node. Meanwhile, full edges connecting a compound node to other
nodes together with a dotted edge connecting this compound node to another goal
node represent a decomposition.

Example 4 (Hypergraph) To the illustrative purpose, Fig. 6 describes the hyper-
graph of the case study with two observable rules ro1 and ro2 for goal g2−Optimal

arrival sequence applied and goal g5−Data exchanged, respectively. Notice that, goals with
a same number refer to the same objective, and only one of them is fully labeled
to save the space.

In this figure, white goals indicate objectives identified at current time. Mean-
while, gray goals denote objectives introduced if evolution happens. In rule ro1,
discussed in Example 2, the original subpart {g5 ← g9} might evolve to either

Dealing with Known Unknowns: A Goal-based Approach 17

{g5 ← {g9, g12} , g5 ← {g9, g13}} or {g5 ← {g9, g12, g13}} with a probability of 46%
and 42%, respectively. The original part might stay unchanged with a probability
of 12%. Similarly, in ro2 the original subpart {g2 ← {. . .}} might also evolves to
two other possibilities with probabilities of 45% and 40%. The remain unchanged
probability of ro2 is 15%.

Once an evolutionary goal model was transformed into a corresponding evo-
lutionary hypergraph G〈V,E〉, every node x in G is tagged with a data structure
called design alternative table (DAT), denoted as DAT(x), holding information
for further calculating the max belief and residual risk. DAT(x) is a set of tuplesS
{〈Si,mbi, rri, Ti〉}, where:

– Si ⊆ G is a set of leaf goals necessary to fulfil this node.
– mbi, rri are the values of max belief and residual risk, respectively.
– Ti is a set of strings 〈roα, i〉 which is the ith possibility of a rule roα. This is

used to keep track of the path of evolutions.

Obviously, two tuples in a DAT which have a same Ti are two design alterna-
tives of an observable evolution possibility. Initially, DAT of each node is initial-
ized as follows.

DAT (x)←

8<:{〈{x} , 1, 0, ∅〉} if x is a leaf goal,
∅ otherwise.

(5)

The DATs of leaf nodes are then propagated upward to predecessor nodes (an-
cestors). This propagation is done by two operators join(⊗) and concat(⊕).
Also via these operations, DAT of an predecessor node is generated using their
successor’s DATs.

DAT(x1)⊕DAT(x2)← DAT(x1) ∪DAT(x2)

DAT(x1)⊗DAT(x2)←
[
i,j

˘
〈Si ∪ Sj ,mbi ·mbj , 1− rri · rrj , Ti ∪ Tj〉

˛̨
〈Si,mbi, rri, Ti〉 ∈ DAT(x1), 〈Sj ,mbj , rrj , Tj〉 ∈ DAT(x2)

¯ (6)

Lemma 1 The operator join and concat are commutative and associative.

Proof (Lemma 1) By definition,

DAT(x1)⊕DAT(x2)← DAT(x1) ∪DAT(x2)

= DAT(x2) ∪DAT(x1)→ DAT(x2)⊕DAT(x1)
(7)

`
DAT(x1)⊕DAT(x2)

´
⊕DAT(x2)← (DAT(x1) ∪DAT(x1)) ∪DAT(x2)

= DAT(x1) ∪ (DAT(x1) ∪DAT(x2))

→ DAT(x1)⊕
`
DAT(x2)⊕DAT(x2)

´ (8)

From (7),(8), we conclude that concat(⊕) is commutative and associative. Sim-
ilarly, we also have join(⊗) commutative and associative.

18 F. Massacci and L.M.S. Tran

When propagated upward, depend on the kinds of predecessor nodes and the
kinds of connections among nodes, suitable operation (join or concat) will
be applied. join is used to generate the DAT of a compound node where the
semantic is that all child node are chosen. Whereas, concat is used to generate
the DAT of a goal node or observable node where the semantic is the selection of
one among its successor.

DAT (x)←

8>>>>>>>>>><>>>>>>>>>>:

M
∀〈gi,x,pi〉∈E

“
map〈x,i,pi〉DAT(gi)

”
x is an observable node,

M
∀〈ci,x,1〉∈E

DAT(ci) x is a goal node.

O
∀〈xi,x,pi〉∈E

DAT(xi) x is a compound node.

(9)

where map〈x,i,pi〉DAT(x) =
[
j

{〈Sj , pi ·mbj , 1− pi · rrj , 〈x, i〉 ‖Tj〉}. The operator ‘‖’

denotes the string concatenation operation e.g., a‖ {b, c} = {ab, ac}.
We assume that there are only one top goal in the goal model. Even though it is

not the case in practice, we are always able to introduce a new phantom root goal
which is AND-decomposed to all existing top goals. This trick ensures that there
is only one root DAT generated. Once the DAT of root node is generated, it is used
to calculate the max belief and residual risk of an arbitrary configuration C.

To this end, given an evolutionary goal model eGM with root node is x0, the
following formulae calculate the max belief and residual risk of a configuration C.

MaxB(C) = max
∀〈Si,mbi,rri,Ti〉∈SDA(C)

mbi

RRisk(C) = 1−
X

∀〈Si,mbi,rri,Ti〉∈SDA(C)

rri
(10)

where

∀ 〈Si,mbi, rri, Ti〉 ∈ DAT(x0).C ⊇ Si∧@ 〈·, ·, ·, Ti〉 ∈ SDA(C)⇒ 〈Si,mbi, rri, Ti〉 ∈ SDA(C)

Notice that two or more tuples in an DAT which have a same Ti determine that
they are design alternatives fulfilling a same observable evolution possibility. Thus,
when calculating residual risk, only one of them is taken into account.

Algo. 1 presents the algorithm that generates DATs for every node in a given
evolutionary hypergraph. The algorithm comprise two procedures, generateDAT
and initializeDAT. The later (line 23–34) initializes DATs for every nodes
in accordance to Formula 5. This procedure also initializes two data structures,
REACH and Q. The later holds list of ready-to-process nodes which have their
successors DATs properly generated, whereas the former holds the number of un-
processed child nodes of an arbitrary node. In other words, REACH[x] is 0 if and
only if x is ready to process. Initially, all leaf nodes are enqueued as they are ready
to process.

The former procedure, generateDAT, generates DATs of non-leaf nodes by
synthesizing successors’ DATs. The basic idea of the procedure is as follows. First,

Dealing with Known Unknowns: A Goal-based Approach 19

Algorithm 1. Generating DATs for an evolutionary graph.

1 procedure generateDAT(G: EvolutionaryHyperGraph)
2 begin
3 initializeDAT(G);
4 while Q 6= ∅ do
5 n←dequeue(Q);
6 i←0;
7 if (REACH[n] = 0) {check whether node is ready, but not visited}
8 REACH[n]←−1; {mark node visited}
9 for each 〈x, n, p 〉 ∈G do {incoming edges of n}

10 i←i + 1; {ith incoming edges of n}
11 if n is an observable node then
12 DAT[n]←concat(n, DAT[n], map(〈x, i, p 〉, DAT[x]));
13 else if n is a goal node then
14 DAT[n]←concat(n, DAT[n], DAT[x]);
15 else
16 DAT[n]←join(n, DAT[n], DAT[x]);
17 for each 〈n, y, p 〉 ∈G do {outgoing edges of n}
18 REACH[y]←REACH[y] − 1;
19 if REACH[y] = 0 then
20 enqueue(Q, y);
21 end
22

23 procedure initializeDAT(G: EvolutionaryHyperGraph)
24 begin
25 makeQempty();
26 for each x: Node ∈G do
27 if x is leaf then
28 DAT[x]←{〈{x} , 1, 0, ∅〉};
29 REACH[x]←0;
30 enqueue(Q, x);
31 else
32 DAT[x]←∅ ;
33 REACH[x]←|xin|; {number of incoming edges}
34 end

it initializes necessary data structures, REACH, DAT and Q (line 3). The while
loop at line 4 to line 20 processes all ready nodes of queue Q. For each dequeued
node n of queue Q, the for loop at line 9–16 calculates DAT(n) in accordance to
Formula 9. The for loop at line 17–20 counts down the number of unprocessed
children of n’s parent nodes by 1 (as n has been processed). If any parent of n is
ready (line 19), it is push to queue Q (line 20) for later processing.

Since DATs are maintained at each graph node, if there is any change in the
model, the corresponding DATs are then updated. Changes in DATs are propa-
gated to parent node with minimal re-calculation. Algo. 2 describes the algorithm
propagating change at an arbitrary node.

20 F. Massacci and L.M.S. Tran

Algorithm 2. Updating incrementally DAT.

1 procedure updateDAT(G : EvolutionaryHyperGraph, t : node)
2 begin
3 makeQemtpy();
4 enqueue(Q, t);
5 while Q 6= ∅ do
6 n←dequeue(Q);
7 i←0;
8 DAT[n]←∅ ;
9 for each 〈x, n, p 〉 ∈G do {incoming edges of n}

10 i←i + 1; {ith incoming edges of n}
11 if n is an observable node then
12 DAT[n]←concat(n, DAT[n], map(〈x, i, p 〉, DAT[x]));
13 else if n is a goal node then
14 DAT[n]←concat(n, DAT[n], DAT[x]);
15 else
16 DAT[n]←join(n, DAT[n], DAT[x]);
17 for each 〈n, y, p 〉 ∈G do {outgoing edges of n}
18 enqueue(Q, y);
19 end

The inputs of Algo. 2 are the evolutionary hypergraph whose nodes’ DAT have
been generated by Algo. 1, and a changed node t. The algorithm initializes a queue
Q holding nodes whose DATs need to be updated (line 3). At the beginning,Q holds
t. Then, the while loop at line 5 sequentially extracts nodes n from Q to update
DAT(n). Once node n extracted, its DAT is reset to empty, then the for loop at line
9 re-calculate DAT[n] as exactly as Algo. 1 does. After that, the for loop at line
17 puts all ancestors of n to Q to further update their DATs.

Theorem 1 The algorithm 1 always terminates in time polynomial in the number
of nodes of the hypegraph and the number of alternative solutions. When termi-
nated, all DATs of all nodes in the input graph are initialized as Formula 9.

Proof (Theorem 1) Let us consider the first point in the theorem about the polyno-
mial complexity of the algorithm. Algo. 1 has two for loops (line 9, 17) nesting
inside a while loop (line 4). The two for loops are proportional to the maximum
incoming edges of an arbitrary node. Suppose that the graph has n node, then the
maximum incoming edges is n − 1. Hence the complexity of these for loops are
O(n) if we ignore the complexities of join and concat.

The outside while loop terminates when the queue Q empty. At beginning,
the initialization at line 3 pushes all leaf nodes to the queue. Later on, only nodes
y which REACH[y] equals 0 are enqueued (line 19, 20). When a node y is being
processed, its corresponding REACH[y] is marked as -1 (line 8). Thus every node
is processed exactly once due to the check at line 7. Hence the complexity of the
algorithm is O(n2).

Dealing with Known Unknowns: A Goal-based Approach 21

Algorithm 3. Calculating max belief and residual risk using DAT.

1 procedure calcMBRR(DAT : DAT, C : set of Goal, out mb, rr : number)
2 begin
3 trails←∅ ;
4 totalBelief←0;
5 mb←0;
6 for each 〈Si,mbi, rri, Ti 〉 in DAT do
7 if (C ⊇ Si and Ti /∈ trails) then
8 mb←max(mb, mbi);
9 totalBelief←totalBelief + (1 − rri);

10 trails←trails ∪ {Ti}
11 rr←1 − totalBelief;
12 end

This values need to be multiplied by the complexity of the join and concat
operations which is bounded by the number of design alternatives in the DAT.

The second point of the theorem is that DATs for all nodes are properly gen-
erated when the algorithm terminates. Since join and concat operators are
commutative and associative (see Lemma 1), the DAT calculation of a node by the
for loop at line 9 obviously follows Formula 9. Furthermore, when a node have
all of its children processed, it is immediately put in queue Q. This means that it
will be processed sometime later. Therefore, when the algorithm terminates, all
nodes have their DAT calculated as Formula 9.

Theorem 2 (Stability of DAT) Each time a node changes, its DAT as well as its
ancestors’ DATs are updated.

Proof (Theorem 2) When Algo. 1 is running, once a node x has been visited,
REACH[x] is set to -1 (line 8). After that, DAT[x] is no longer touch by Algo. 1
because of the precondition check at line 7.

Later on, if users change x e.g., adding new predecessors, Algo. 2 is invoked.
Therefore, the DATs of x and its ancestors are updated.

Algo. 3 presents the algorithm calculating max belief and residual risk of a
configuration C using DAT of the root node, which generated by Algo. 1. Basi-
cally, this algorithm is a translation of Formula 10 in programming language. The
algorithm walks though all elements DAi of the DAT (the for loop at line 6),
checks whether C supports DAi, and there is no DAj which have the same trail
with DAi. For each matched element, the max belief and total belief values are
updated (line 8–9). When the for loop terminates, the residual risk is the comple-
ment of calculated total belief (line 11).

Example 5 (Max Belief, Residual Risk and DAT) We apply the algorithm to the
hypergraph denoted in Example 4. Table 2 presents some entries in the DAT of the
root goal g1, for the full DAT (g1), please refer to Table 3 in the appendix. Next, we
apply Formula 10 to calculate the max belief and residual risk of a configuration
C= {g9, g12, g6, g7, g11, g15, g16, g17, g19, g20} as follows.

22 F. Massacci and L.M.S. Tran

Table 2 Samples in the DAT table of the root node g1

Design Alternative (DA) MB RR Trail (T)

1 {g9, g6, g7, g10, g11} 1.80% 98.20% {〈ro1, 0〉 , 〈ro2, 0〉}
2 {g9, g6, g7, g11, g15} 5.40% 94.60% {〈ro1, 0〉 , 〈ro2, 1〉}
3 {g9, g6, g7, g11, g15, g16, g17} 5.40% 94.60% {〈ro1, 0〉 , 〈ro2, 1〉}
4 {g9, g6, g7, g11, g15, g16, g17, g19, g20} 4.80% 95.20% {〈ro1, 0〉 , 〈ro2, 2〉}
5 {g9, g6, g7, g11, g15, g16, g17, g19, g21} 4.80% 95.20% {〈ro1, 0〉 , 〈ro2, 2〉}
6 {g9, g6, g7, g11, g15, g16, g17, g19, g20, g21} 4.80% 95.20% {〈ro1, 0〉 , 〈ro2, 2〉}
7 {g9, g12, g6, g7, g10, g11} 6.30% 93.70% {〈ro1, 1〉 , 〈ro2, 0〉}
8 {g9, g12, g6, g7, g11, g15} 18.90% 81.10% {〈ro1, 1〉 , 〈ro2, 1〉}
9 {g9, g12, g6, g7, g11, g15, g16, g17} 18.90% 81.10% {〈ro1, 1〉 , 〈ro2, 1〉}
10 {g9, g12, g6, g7, g11, g15, g16, g17, g19, g20} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}

.
23 {g9, g12, g13, g6, g7, g11, g15, g16, g17, g19, g21} 18.40% 81.60% {〈ro1, 2〉 , 〈ro2, 2〉}
24 {g9, g12, g13, g6, g7, g11, g15, g16, g17, g19, g20, g21} 18.40% 81.60% {〈ro1, 2〉 , 〈ro2, 2〉}

Bold lines (2–4, 8–10) are design alternatives supported by configuration C=
{g9, g12, g6, g7, g11, g15, g16, g17, g19, g20}.

– Identify design alternatives supported by C. Look at Table 2, line 2–4, 8–10
refer to alternatives supported by C.

SDA(C) = {DA2, DA3, DA4, DA8, DA9, DA10}

– Remove alternatives that have duplicated trail (T). Among selected alterna-
tives, DA2, DA3 have a same trail, and DA8, DA9 also have a same trail. Thus
we remove DA3, DA9 from DA(C):

SDA(C) = {DA2, DA4, DA8, DA10}

– Calculate the max belief and residual risk.

MaxB(C) = max {5.4%, 4.8%, 18.9%, 16.8%} = 18.9%

RRisk(C) = 1− (1− 94.6%) + (1− 95.2%) + (1− 81.1%) + (1− 83.2%) = 54.1%

A weak part of the algorithm is the dependence on the number of not-dominated
design alternatives. If the design alternatives form a k-ary tree, then the number of
leave is about L ≈ n+ 1

k
, where n is number of alternative task nodes. Then the

number of design alternatives would be a power set of L. So in worst case, we need
to join two DATs with 2L/2 elements each, the complexity of join thus is O(2n)

Such huge number of alternatives cannot found in practice. Indeed we can
simply discard the alternatives that are dominated by other in both max belief and
residual risk. The worst case scenario can only materialize in the case of perfect
uncertainty: all observable alternatives have exactly the same probability and each
design alternative is mutually not compatible with some observable alternative.

The discussion with experts from ATM domains that we carried out in the
SecureChange project showed that AND decomposition and observable rules form
the bulk of the graph with very few design alternatives. Further, some of the design
alternatives distinguish between the vanilla or rich version of a solution so that

Dealing with Known Unknowns: A Goal-based Approach 23

one alternative works for both. This further reduces the number of truly alternative
configurations.

For example in the goal model of the AMAN system provided by ATM experts,
there are 54 goals (36 are leaves), 23 AND-decomposition, but only 6 design alter-
natives. It means that the complexity of the join operator in this real world case
is less far than the number of nodes.

9 Related Works

Boyd [6] was one of the first who mentioned the term “enterprise model”. He
introduced many essentially concepts which later became pervasive in the area of
Enterprise Modeling (EM). Vernadat [40] defines EM as the process of building
models of the whole or part of an enterprise (e.g., process models, data models,
resource models, etc.)

There exists several techniques, frameworks, languages and tools for repre-
sentation of enterprise and its processes. They includes SADT, Data Flow Dia-
grams (DFDs), IDEF0 and IDEF [32], activity diagrams in the UML, IEM [22],
GRAI/GIM [9], ARIS/EPC [34], UEML [39], CIMOSA [7], GERAM [5]. Be-
sides those, i* modeling framework [41] was introduced to support the modeling
of strategic relationships among organizational actors. It provides sets of concepts
that complement other approaches for organizational modeling (such as CIMOSA
and GERAM) to address the need for expressing complex organizational issues as
well as technology ones in an enterprise. However, these models do not cater for
the possibility of evolution.

Evolution was considered initially by Ba et al. [3] in their conceptual Enter-
prise Modeling System (EMS). Their framework automatically builds and exe-
cutes task-specific models as needed in response to queries from users. The EMS
was designed to support strategic decision-making such as predicting the effects of
changes in business policies, analyzing possible reactions to internal and external
threats, and exploring new business opportunities. In general, the framework tried
to address the “what if”, “what should we do”, and “where should we go”-type of
questions. However, this framework was at high abstract level.

Loucopoulous and Kavakli [20] described an approach involving the explicit
modeling to express enterprise views in terms of the technical, social and teleo-
logical dimensions and their relationship to information system goals. They also
illustrated their approach by a case study about Air Traffic Control. In another
work [21], they emphasized Enterprise Knowledge Management as the most im-
portant factor to address the turbulent changes in many industry sectors. They
proposed an enterprise knowledge meta model which consisted of three main el-
ements: ‘enterprise goals’ which are realized by ‘enterprise processes’ and im-
plemented by ‘information system components’. Each element has its own meta
model. The purpose of this enterprise knowledge was the improvement of the en-
terprise in order to deal with changes. They recommended that enterprise change
management should be seen as a process of identifying business goals and relating
business processes to these goals. Though the authors did not have any concrete

24 F. Massacci and L.M.S. Tran

analysis rather than empirical observations in an industrial application, they con-
firmed the premise of the key to successfully change is knowledge about “where
the enterprise is currently”, “where the enterprise wished to be in the future”, and
“alternative designs” for the desired future state.

Nurcan and others [24, 25, 30] presented the Enterprise Knowledge Develop-
ment - Change Management Method (EKD-CMM) which was used in the ELEK-
TRA project [26]. The main goal of EKD-CMM is to provide a framework to
understand the way a specific organization works, determine the reasons and re-
quirements for changes, alternatives to address the requirements, and the criteria
for the evaluation of the alternatives. The application of the EKD-CMM results in
three models, namely the As-Is-Model, the To-Be-Model and the Change Process
Model. Also discussed on EKD-CMM, Barrios and Nurcan [4, 23] mentioned a
critical need for realistic representations of “what are the current or future busi-
ness situations”, or what should be changed in today enterprise. They provided a
roadmap for EKD-CMM as a systematic way to deal with enterprise modeling and
transformation. Enterprise objectives (or enterprise goals), processes, and systems
are integrated in a single modeling framework using three-layer model.

Other notable works include Dalal et al [8] and Kassem et al [13]. Dalal et al, in
their article [8] identified four gaps related to EM methods. Among those, one se-
rious gap is a lack of a formal theory enabling quantitative analysis in the interests
of making better business decisions. Our proposal of the quantitative metrics of
MaxBelief and Residual Risks directly addresses this issue. In [13], Kassem et al.
presented guidelines for the selection of the right modeling method, and proposed
a methodology for Enterprise Modeling. They found that the selection should be
a function of: the purpose, the ease of communication between stakeholders, the
characteristic of the modeling environment and the characteristic of the modeling
technique itself. The methodology is based on the combined use of IDEF0 and
Dependency Structure Matrix (DSM) to produce functional requirements for the
collaborative software. This methodology hence is capable to understand complex
interactions, facilitate the management of change, and create a shared vision of
business processes. However, the authors did not focus on any further analysis for
change management.

10 Conclusion

In this work we have addressed the issues of modeling evolutions of enterprise
systems. In particular, we focused on potential evolutions which can be foreseen,
but it is not sure that these evolutions do actually happen. We called this problem
managing known unknown.

Our proposed approach introduces the notion of evolution rules, comprising of
observable and controllable rules, as a mechanism for handling this phenomenon.
The uncertainty of evolution is expressed using probability values represent ex-
pertise beliefs on the occurrence of evolutions, which is accounted using game-
theoretic approach. Additionally, we provided a brief discussion about the graph-
ical notion for representing these rules, which has been validated with ATM ex-
perts. Furthermore, based on that belief, we introduce two quantitative metrics to

Dealing with Known Unknowns: A Goal-based Approach 25

measure the level of usefulness of design alternatives. This provides a quantitative
analysis that supports decision makers in deciding which is the optimal configura-
tion for their enterprise.

To exemplify our approach, we discussed a case study in ATM domain. This
case study is about deploying AMAN to the working position of ATCOs, and its
applicability aspects have been subject to a number of sessions with ATM experts.
From that case study, we have drawn several examples to explain our idea, and
also to show the promising applicability of our approach.

Our future work is geared towards providing an interaction protocol with stake-
holders that allow a simple elicitation and validation of the probability estimates.
A promising avenue seems to use the Analytic Hierarchy Process (AHP) method
for a first cut description and then use our game semantics to validate and refine
them.

References

1. C. Anderson. The long tail. Wired, October 2004.
2. A. I. Antón and C. Potts. Functional paleontology: The evolution of user-visible system

services. IEEE Transactions on Software Engineering, 29(2):151–166, 2003.
3. S. Ba, A. B. Whinston, and K. R. Lang. An enterprise modeling approach to organi-

zational decision support. In Proceedings of the twenty-eighth annual Hawaii Interna-
tional Conference on System Sciences, pages 312–320, 1995.

4. J. Barrios and S. Nurcan. Model driven architectures for enterprise information sys-
tems. In Proceedings of the 16th Conference On Advanced Information Systems Engi-
neering, pages 3–19, 2004.

5. P. Bernus. GERAM: Generalised enterprise reference architecture and methodology.
version 1.6.3, March 1999.

6. D. Boyd. A new management technique. Enterprise models: Industrial Management
Review, 8(1), 1966.

7. CIMOSA. Computer integrated manufacturing open system architecture: A primer on
key concepts, purpose and business value. Online primer, Accessed April 2009.

8. N. P. Dalal, W. J. Kolarik, and E. Sivaraman. Toward an integrated framework for
modeling enterprise processes. Commun. ACM, 47(3):83–87, March 2004.

9. G. Dougmeingts, Y. Ducq, B. Vallespir, and S. Kleinhans. Production management and
enterprise modelling. Comput. Ind., 42:245–263, July 2000.

10. A. Elberse. Should you invest in the long tail? Harvard Business Review, 2008.
11. J. L. Fiadeiro. On the challenge of engineering socio-technical systems. In Software-

Intensive Systems and New Computing Paradigms, volume 5380 of Lecture Notes in
Computer Science, pages 80–91. Springer-Verlag, 2008.

12. J. Hassine, J. Rilling, J. Hewitt, and R. Dssouli. Change impact analysis for requirement
evolution using use case maps. In IWPSE ’05, 2005.

13. M. Kassem, N. N. Dawood, and D. Mitchell. A structured methodology for enterprise
modeling: a case study for modeling the operation of a british organization. Journal of
Information Technology in Construction, 16:381–410, 2011.

14. C. F. Kemerer and S. Slaughter. An empirical approach to studying software evolution.
IEEE Transactions on Software Engineering, 25(4):493–509, 1999.

15. W. Lam and M. Loomes. Requirements evolution in the midst of environmental change:
a managed approach. In CSMR ’98, 1998.

26 F. Massacci and L.M.S. Tran

16. M. LaMantia, Y. Cai, A. MacCormack, and J. Rusnak. Analyzing the evolution of
large-scale software systems using design structure matrices and design rule theory:
Two exploratory cases. In Proc. of WICSA ’08, pages 83–92, 2008.

17. M. Lehman. On understanding laws, evolution and conservation in the large program
life cycle. J. of Sys. and Soft., 1(3):213 –221, 1980.

18. M. Lehman. Programs, life cycles, and laws of software evolution. Proc. IEEE 68,
9:1060 –1076, September 1980.

19. L. Lin, S. Prowell, and J. Poore. The impact of requirements changes on specifications
and state machines. SP&E, 39(6):573–610, 2009.

20. P. Loucopoulos and E. V. Kavakli. Enterprise modelling and the teleological approach
to requirements engineering. International Journal of Intelligent and Cooperative In-
formation Systems, 4(1):44–79, 1995.

21. P. Loucopoulos and E. V. Kavakli. Enterprise knowledge management and conceptual
modelling. In Selected Papers from the Symposium on Conceptual Modeling, Current
Issues and Future Directions, pages 123–143, London, UK, 1999. Springer-Verlag.

22. K. Mertins and R. Jochem. Integrated enterprise modeling: method and tool. ACM
SIGOIS Bulletin, 18(2), 1997.

23. S. Nurcan and J. Barrios. Enterprise knowledge and information system modelling
in an evolving environment. In International Workshop on Engineering Methods to
Support Information Systems Evolution (EMSISE’03), 2003.

24. S. Nurcan, J. Barrios, G. Grosz, and C. Rolland. Change process modelling using the
ekd change management method. In Proceedings of 7th European Conference on
Information Systems, ECIS’99, pages 513–529, June 23-25 1999.

25. S. Nurcan and C. Rolland. A multi-method for defining the organizational change. A
multi-method for defining the organizational change, pages 61–82, 2003.

26. Project ELEKTRA. ELEKTRA: Enhanced Learning Experience and Knowledge
TRAnsfer. http://www.elektra-project.org, Retrieved April 4 2011.

27. Project PROTEUS. Deliverable 1.3: Meeting the challenge of chainging requirements.
Technical report, Centre for Software Reliability, University of Newcastle upon Tyne,
June 1996.

28. Project SECURECHANGE. Deliverable 1.1: Description of the scenarios and their
requirements. http://securechange.eu/content/deliverables, 2010.

29. R. Ravichandar, J. Arthur, S. Bohner, and D. Tegarden. Improving change tolerance
through capabilities-based design: an empirical analysis. J. of Soft. Maintenance and
Evolution: Research and Practice, 20(2):135–170, 2008.

30. C. Rolland, S. Nurcan, and G. Grosz. Enterprise knowledge development: the process
view. Information & Management, 36(3):165 – 184, 1999.

31. J. Rooksby, M. Rouncefield, and I. Sommerville. Testing in the wild: The social and
organisational dimensions of real world practice. Computer Supported Cooperative
Work, 18(5-6):559–580, 2009.

32. D. Ross and K. Schoman. Structured analsysis for requirements definition. IEEE
Transactions on Software Engineering, 3(1):69–84, 1977.

33. A. Russo, B. Nuseibeh, and J. Kramer. Restructuring requirements specifications. In
IEE Proceedings: Software, volume 146, pages 44 – 53, 1999.

34. A.-W. Scheer. ARIS–business process modeling. Heidelberg, German: Springer-Verlag,
2000.

35. G. Shafer, V. Vovk, and R. Chychyla. How to base probability theory on perfect-
information games. BEATCS, 100:115 – 148, February 2010.

36. P. Soffer. Scope analysis: identifying the impact of changes in business process models.
J. of Soft. Process: Improvement and Practice, 10(4):393–402, 2005.

Dealing with Known Unknowns: A Goal-based Approach 27

37. L. M. S. Tran. Dealing with known unknowns: A goal-based approach for understand-
ing complex systems evolution. Technical report, University of Trento, 2011.

38. L. M. S. Tran and F. Massacci. Dealing with known unknowns: Towards a game-
theoretic foundation for software requirement evolution. In Proceedings of the 23th
Conference On Advanced Information Systems Engineering, pages 62–76, 2011.

39. F. Vernadat. UEML: Towards a unified enterprise modelling language. International
Journal of Production Research, 40(17), 2002.

40. F. B. Vernadat. Enterprise Modeling and Integration Principles and Applications.
Chapman and Hall Publisher, 1996.

41. E. Yu. Strategic modelling for enterprise integration, 1999.
42. D. Zowghi and R. Offen. A logical framework for modeling and reasoning about the

evolution of requirements. ICRE ’97, 1997.

Appendix

Table 3 Full DAT table of the root node g1

Design Alternative (DA) MB RR Trail (T)

1 {g9, g6, g7, g10, g11} 1.80% 98.20% {〈ro1, 0〉 , 〈ro2, 0〉}
2 {g9, g6, g7, g11, g15} 5.40% 94.60% {〈ro1, 0〉 , 〈ro2, 1〉}
3 {g9, g6, g7, g11, g15, g16, g17} 5.40% 94.60% {〈ro1, 0〉 , 〈ro2, 1〉}
4 {g9, g6, g7, g11, g15, g16, g17, g19, g20} 4.80% 95.20% {〈ro1, 0〉 , 〈ro2, 2〉}
5 {g9, g6, g7, g11, g15, g16, g17, g19, g21} 4.80% 95.20% {〈ro1, 0〉 , 〈ro2, 2〉}
6 {g9, g6, g7, g11, g15, g16, g17, g19, g20, g21} 4.80% 95.20% {〈ro1, 0〉 , 〈ro2, 2〉}
7 {g9, g12, g6, g7, g10, g11} 6.30% 93.70% {〈ro1, 1〉 , 〈ro2, 0〉}
8 {g9, g12, g6, g7, g11, g15} 18.90% 81.10% {〈ro1, 1〉 , 〈ro2, 1〉}
9 {g9, g12, g6, g7, g11, g15, g16, g17} 18.90% 81.10% {〈ro1, 1〉 , 〈ro2, 1〉}
10 {g9, g12, g6, g7, g11, g15, g16, g17, g19, g20} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}
11 {g9, g12, g6, g7, g11, g15, g16, g17, g19, g21} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}
12 {g9, g12, g6, g7, g11, g15, g16, g17, g19, g20, g21} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}
13 {g9, g13, g6, g7, g10, g11} 6.30% 93.70% {〈ro1, 1〉 , 〈ro2, 0〉}
14 {g9, g13, g6, g7, g11, g15} 18.90% 81.10% {〈ro1, 1〉 , 〈ro2, 1〉}
15 {g9, g13, g6, g7, g11, g15, g16, g17} 18.90% 81.10% {〈ro1, 1〉 , 〈ro2, 1〉}
16 {g9, g13, g6, g7, g11, g15, g16, g17, g19, g20} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}
17 {g9, g13, g6, g7, g11, g15, g16, g17, g19, g21} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}
18 {g9, g13, g6, g7, g11, g15, g16, g17, g19, g20, g21} 16.80% 83.20% {〈ro1, 1〉 , 〈ro2, 2〉}
19 {g9, g12, g13, g6, g7, g10, g11} 6.90% 93.10% {〈ro1, 2〉 , 〈ro2, 0〉}
20 {g9, g12, g13, g6, g7, g11, g15} 20.70% 79.30% {〈ro1, 2〉 , 〈ro2, 1〉}
21 {g9, g12, g13, g6, g7, g11, g15, g16, g17} 20.70% 79.30% {〈ro1, 2〉 , 〈ro2, 1〉}
22 {g9, g12, g13, g6, g7, g11, g15, g16, g17, g19, g20} 18.40% 81.60% {〈ro1, 2〉 , 〈ro2, 2〉}
23 {g9, g12, g13, g6, g7, g11, g15, g16, g17, g19, g21} 18.40% 81.60% {〈ro1, 2〉 , 〈ro2, 2〉}
24 {g9, g12, g13, g6, g7, g11, g15, g16, g17, g19, g20, g21} 18.40% 81.60% {〈ro1, 2〉 , 〈ro2, 2〉}

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 112/136

APPENDIX F

Understanding How to Manage Requirements
Evolution: An Experience in the Air Traffic Domain ?

F. Paci1, M.S. Tran1, F. Massacci1, D. Nagaraj1, and A. Tedeschi2

1 DISI - University of Trento,
{paci, tran, massacci,nagaraj}@disi.unitn.it

2 Deep Blue
alessandra.tedeschi@dblue.it

Abstract. [Context/Motivation] Requirements evolution is still a major prob-
lem in practice. Continuously changing requirements make the traceability of
requirements difficult and the monitoring of requirements unreliable.[Question/
Problem] In this paper we tackle the problem of modeling and reasoning about
requirements evolution. Our research objectives are to gain in-depth understand-
ing of the change management process adopted in a real industrial setting, and
investigate how the approach to model and reason on requirements evolution pre-
viously proposed in [15] can facilitate the industrial change management pro-
cess. [Principal Ideas/Results]This paper presents the results of the qualitative
user study we have conducted in the air traffic management (ATM) domain where
change management is still an open issue [13]. The user study has involved eight
ATM domain experts in the assessment of the approach to requirement evolution.
[Contribution] The results from the study demonstrated the usefulness of the
approach to requirements evolution in the ATM industrial setting. Furthermore,
important lessons were learned about the key aspects of the approach to evolu-
tion and about the aspects to be taken into account during research methodology’s
design.

Keywords: requirement engineering, evolution, change management, user study, air
traffic domain

1 Introduction

The requirements for any non-trivial system will inevitably change, not only after the
system has been built, but also during the process of implementing the system. Changes
make the traceability of requirements hard and the monitoring of requirements unreli-
able: requirements management is difficult, time-consuming and error-prone when done
manually. Thus, change management is a major problem in practice. However, very few
empirical studies [6, 16, 9, 10, 3] about requirements evolution have been reported.

This paper presents the results of a user study conducted about modeling and rea-
soning on requirements evolution. The study has been carried out using a qualitative
research approach. Qualitative research aims to investigate and understand social and

? Work partly supported by the projects EU-FP7-IP-SecureChange, EU-FP7-NoE-NESSOS.

cultural phenomena in the context where they exist. The study is mainly built on semi-
structured interviews with a high degree of discussion completed with focus groups
meetings.

The objectives of the user study are twofold: a) gain in-depth understanding of the
change management process adopted in a real industrial setting, and b) investigate the
role that an approach to model and reason on requirements evolution (previously pro-
posed in [15]) can play in such process. The approach consists of a representation of
an evolving requirement model as a set of controllable and observable rules and a rea-
soning technique based on two metrics called maximal belief and residual risk that
intuitively measure the usefulness of a model element (or a set of elements) after evo-
lution.

As industrial setting we have considered the air traffic management (ATM) domain
for two main reasons. First, the ATM systems are complex and critical systems that
are going through significant structural, operational and cultural changes as planned by
the EU Single European Sky ATM Research(SESAR) Initiative [1]. Second, change
management is still an open issue in the ATM domain: the need of system engineer-
ing techniques to support change management is well recognized [13]. For the user
study, we have focused on the change management process followed by Air Navigation
Service Providers to introduce at operational level a new decision supporting tool, the
AMAN. The AMAN suggests to the Air Traffic Controllers (ATCOs) an optimal arrival
sequence of aircrafts and provides support in establishing the optimal aircraft approach
route.

The user study has involved twelve participants of which four were requirement
analysts who form the research team while the other were ATM domain experts who
have been involved in the change management process to introduce the AMAN. It also
provided useful insights into the weaknesses and advantages of our approach to require-
ment evolution’s modeling and reasoning. The user study demonstrated the usefulness
of the approach to requirements evolution in the change management process. The rea-
soning supported by the approach to requirements evolution has been considered by the
ATM experts as a powerful decision-support tool that allows one to select the optimal
design which is resilient to future changes in a requirements model. Moreover, we have
learnt important lessons about the aspects to be taken to into account when a research
methodology is designed.

The paper is organized as follows. Section 2 presents the related work. Section 3
gives an overview of the approach to requirements evolution which has been validated
during the workshop. Section 4 presents the research methodology. Section 5 summa-
rizes the results of the user study while Section 6 presents the relevant findings and
concludes the paper.

2 Related Work

Several studies have been conducted to understand the challenging aspects of require-
ments engineering. Curtis et al. [5] published the first significant field study exploring
how requirements and design decisions are made. Crucial issues reported by the par-
ticipants of the study were conflicting requirements and communication breakdowns.

2

Chatzoglou et al. [4] conducted a study about the management of requirements capture
and analysis (RCA) process, to investigate the presence of significant differences be-
tween projects developed by different people and organisations. The study identifies as
main challenging aspect the lack of adoption of a methodology during the RCA process.

Several studies discuss the challenges associated with requirements modeling. Lubars
et al. [11] summarized the findings of a field study involving ten organizations, fo-
cusing on the problems of vaguely stated requirements and requirements prioritiza-
tion. Other issues were the unclear relation of performance requirements with parts
of dataflow/control flow specifications. In [2], Bertolino et al. provided an approach
for validating a domain model with experts ensuring the model captures properly the
intended domain knowledge. Another relevant work include the one of Maiden et al.
[12] who have conducted workshops with stakeholders using a concurrent engineering
process focusing on system goal modeling to model the future system.

The closest works to ours include the studies by Herrmann et al. [6], Welsh and
Sawyer [16], Kamsties et al. [9], Karlsson et al. [10], and Carlshamre et al. [3]. Her-
rmann et al. described a process for capturing delta requirements (requirements de-
scribing enhancements) deducing the level of detail to be maintained in the existing
system. In another study, Welsh and Sawyer use requirement traceability information
to handle requirement changes in Dynamic Adaptive System’s (DAS). They also pro-
pose an extension to i* strategic rationale models to aid changing a DAS. Kamsties et
al. and Carlshamre et al. have investigated the role of requirements interdependencies
when new requirements need to be implemented for next system releases. Kamsties et
al. summarized the results of a workshop on requirements engineering held with prac-
titioners from ten small and medium enterprises. The main result from the workshop
was that new requirements implementation can cause unpredictable interactions with
requirements that are already implemented. Carlshamre et al. conducted a survey of
five different companies that has shown that visualization of requirement interdepen-
dencies is efficient in identification of salient characteristics of requirements. Karlsson
et al. pointed the importance to have methods to cope with changing requirements.

Compared to above studies on changing requirements, the user study we have con-
ducted does not only aim at understanding how requirements evolution is handled in
an industrial setting (the ATM domain) but it also focused on validating our concrete
approach to deal with requirements evolution.

3 An Approach to Requirements Evolution

This section gives an overview of our approach [15] to manage the evolution of require-
ments. Requirements evolution refers to changes in the requirements of a system. In
our work we consider two categories of evolution: controllable and observable. Con-
trollable evolutions are under the control of system designers who intentionally change
the system design in order to fulfill high level requirements proposed by stakeholders.
In other words, they are designers’ moves to identify design alternatives to implement
a system. Observable evolutions, instead, represent evolutions which are not under the
control of the designer, but that can be somehow detected when they happened or whose
future likelihood can be estimated with a certain confidence by the stakeholders. To
support decision making process, our proposed approach [15] incorporates these kinds

3

<First Possibility of Evolution>

<Second Possibility of Evolution>

<Original Requirements>

42%

46%12%

R2: Support a robust,

scalable IKMI

R3: Support single sign-on

R1: Manage keys

and identities of
system entities

R2: Support a robust,

scalable IKMI

R1: Manage keys

and identities of
system entities

R1: Manage keys

and identities of
system entities

(a) Tree-like representation

Original Requirements

12%
First Possibility of Evolution

42%
Second Possibility of Evolution

46%

R1: Manage keys

and identities of
system entities

R2: Support a

robust, scalable IKMI

R3: Support single sign-

on

R1: Manage keys

and identities of
system entities

R2: Support a

robust, scalable IKMI

R1: Manage keys

and identities of
system entities

(b) Swimlane-based representation

Fig. 1. Visualization of evolution rules.

of evolutions into requirement models in terms of evolution rules. There are two kinds
of rule: controllable rule and observable rule. They are formally defined as follows:

Controllable rule: rc =
[

i=1..n

n
Before

∗−→ Afteri

o
(1)

Observable rule: ro =
[

i=1..n

n
Before

pi−→ Afteri

o
(2)

where Before denotes the before-evolution requirements model and Afteri denotes
one of the possible requirements model to which Before can evolve to, and pi ∈
[0..1] is the probability that Before will evolve to Afteri. We denote pi as evolution
probability.

Example 1. Let assume that the requirements model for the AMAN introduction (de-
noted as RM1) states that the requirement R1 -Manage keys and identities of system
entities (human, software, devices etc) needs to be satisfied. RM1 is associated with
a set of observable rules ro which specify RM1 can evolve to a requirements model
RM2 with a probability of 42%, or to a requirements model RM3 with probability
46% or it can remain unchanged with probability 12%. RM2 is a requirements model
that requires the satisfaction of the requirements R1-Manage keys and identities of sys-
tem entities (human, software, devices etc) and R2-Support a robust IKMI that can be
scaled up to large number of application and users; while RM3 is a requirement model
which requires the satisfaction of the requirements R1, R2, and R3-Single Sign-On
(SSO) support.

The observable evolution rules for the example above can be graphically represented
in two ways: tree-like and swimlane-based representations. Fig. 1(a) illustrates the for-
mer representation. The root node is the Before state which is directly linked to the
Afteri states. Links are labeled with evolution probabilities pi. Fig. 1(b), describes the
swimlane-based representation where Before state is on the left side, and all the pos-
sible Afteri states are located on the right, next to the Before state. The evolution
probabilities are specified on swimlanes’ tops.

4

Evolution
Elicitation

Probability
Estimation

Reasoning Decision

Fig. 2. Requirements Engineering process for Change/Evolution Management

The elicitation of evolution rules is the first step of the change management illus-
trated in Fig. 2. The process consists of four major steps, namely Evolution elicitation,
Probability Estimation, Reasoning, and Decision [14].

STEP 1 Evolution Elicitation. The goal of this key step is to extract evolution rules
from a description in natural language of the possible requirements evolutions.
In order to do that, first, statements about changes are identified. Then, changes
are clustered into mutually exclusive groups. Then, each group will represent an
Afteri requirement model.

STEP 2 Probability Estimation. Based on the evolution rules identified in the previous
step, this step relies on methods like Analytic Hierarchy Process (AHP) to identify
the evolution probability for each possible evolution Afteri of an observable evo-
lution rule. The probabilities are then validated with stakeholders(and/or domain
experts) using a game-theoretic approach [15] to ensure that they are meaningful.

STEP 3 Reasoning. Based on the representation of an evolving requirement model as
a set of controllable and observable rules, it is possible to compute two quantitative
metrics called maximal belief and residual risk that intuitively measure the useful-
ness of a model element (or a set of elements) after evolution. In fact, the maximal
belief tells whether a design alternative is useful after evolution, while residual risk
quantifies if a design alternative is no longer useful.

STEP 4 Decision. Decision makers take the analysis’ outcome to choose the optimal
design for the next development phases. Depending on the kind of analysis, dif-
ferent “optimal” criterion can be applied. For instance, a selection criterion for the
analysis is: “higher max belief and lower residual risk”.

4 Research Methodology

Many different assessment methodologies can be used for validation with domain ex-
perts. For this study, we have mainly used qualitative techniques. Qualitative research
consists of an application of various methods of collecting information, mainly through
focus groups and interviews. Interviews are commonplace techniques where domain
experts are asked questions by an interviewer in order to gain domain knowledge and
it is the most widely used method of finding out what users want [8]. Focus groups
bring together a cross-section of stakeholders in an informal discussion group format.
The user study has involved twelve participants having different background and roles
as summarized in Table 2. P1, P2, P3 and P4 played the role of requirement analyst
and observer. Requirement analysts were responsible for the organization of the user
study and for the analysis of the results. The observers were responsible to record the
meetings and take notes during the execution of the study. The other participants were
ATM domain experts who participated to the semi-structured validation of the proposed
approach to model and reason on requirements evolution.

5

To conduct the user study we have designed a research method that consists of three
main steps: User Study Design, User Study Execution, and Analysis of Results.

Table 1. Research Questions and Success Criteria

Research Questions(RQ) and Success Criteria(SC)
RQ1 How is evolution managed in a fully realistic and complex setting such as ATM

domain?
SC1 The phases of the change management process adopted by Air Navigation

Service Providers are identified. For each phase of the process the partici-
pants and the artifacts used to support the phase are identified.

RQ2 Can the approach to model and reason on requirements evolution be applied to the
change management process adopted by Air Navigation Service Providers?
SC2 The approach to model and reason on requirements evolution can support

and facilitate the change management process by by Air Navigation Service
Providers;

SC3 The approach to model and reason on requirements evolution is sufficiently
expressive to capture the evolution in the ATM domain;

SC4 The approach to model and reason on requirements evolution can be easily
understood by ATM domain experts

4.1 User Study Design
The first step of the research study was to identify the research questions to be addressed
and the success criteria to evaluate the results obtained from the user study(see Table
1). The main objective of the user study is to understand the process to handle change
adopted by Air Service Navigation Providers and to investigate the applicability of the
approach to model and reason on evolution to the different phases of the process.

Once identified the research questions, the ATM domain experts were selected.
Eight domain experts were involved in the user study: P5 has worked in several projects
related to the ATM domain and has a good knowledge of requirements engineering do-
main, P6 has been an air traffic controller for several years, P7 and P8 has worked in
operational projects regarding the development and the management of ATM systems,
P11 and P12 are air traffic controllers and P12 and P13 are Human Factors and Safety
experts in the ATM domain.

Since ATM domain experts were not very familiar with requirements engineering
and do not have knowledge about the approach to model and reason on requirements
evolution, it was necessary to prepare training material in form of presentations. The
training material includes presentations about

– main concepts and analysis techniques relevant for change management in require-
ments engineering domain

– the approach to model and reason on requirements evolution (see Section 3).

The introduction of the AMAN was used as illustrative example through all the training
materials since the ATM domain experts were familiar with this scenario. Also an inter-
view guide containing a list of questions to lead the discussions during the interviews
was prepared.

6

Table 2. Participants Background

Participants Role Position Education Years of Professional Ex-
perience

P1 RA,OBS PostDoc PhD 2
P2 RA,OBS PostDoc PhD 4
P3 RA,OBS PhD MSc 1
P4 RA,OBS Full Professor PhD > 10
P5 DE Consultant MSc 20
P6 DE Consultant PhD > 5
P7 DE ICT Manager MSc > 10
P8 DE SyS Admin MSc > 10
P9 DE ATCO MSc > 10
P10 DE ATCO MSc > 10
P11 DE Human Factors & PhD > 10

Safety Expert
P12 DE Human Factors & PhD > 10

Safety Expert

The table gives an overview of the role and the background of each of the participants of the experiment. In the table OBS
= OBServer, RA = Requirement Analyst, DE = Domain Expert, ATCO = Air Traffic COntroller, SyS Admin = System
Administrator.

The feedback collection from the ATM experts was carried out through semi-structured
interviews and focus groups and by recording the meetings for later analysis.

4.2 User Study Execution

Table 3 outlines the organization of our study. The first column denotes the meeting
type, which can be preliminary meeting (PM), internal working session (IWS) or work-
shop (WS). The second column specifies when the meeting took place. The third col-
umn lists the participants of the meetings. Finally, the last column indicates what hap-
pened during the meeting.

The study was organized into two separated workshops: one held in April (WS1),
and the other one in June 2011 (WS2). Before conducting these two workshops, one pre-
liminary meeting (PM1) was held among requirement analysts and observers to identify
the research questions of the study, the success criteria, and the strategy to be followed
during the study. In between the meetings, there were internal working sessions (IWS1
and IWS2) where requirement analysts prepared relevant materials for the study, in-
cluding case study description and models, presentations, and other training materials
such as the interview guide. These documents were distributed to the domain experts
before the workshops in order to being able to collect feedbacks from them.

The two workshops were divided into two sessions: Designing session and Valida-
tion session. The former lasted the first day of WS1: requirement analysts discussed
with domain experts P5, P6, P11 and P12 about prepared training material (e.g., case
study, presentation slides) to get their feedbacks. Then the training material were mod-
ified based on domain experts’s feedbacks. The Validation session was held during the

7

Table 3. User Study Organization

Meeting Date Participants Contents
PM1 March,

2011
RA, OBS Participants identify the research questions of

the user study, and the success criteria. Further
more, the strategy to be followed to conduct
the study is sketched.

IWS1 March,
2011

RA, OBS, DE RAs,OBSs and DEs define and agree upon the
research design.

IWS2 March,
2011

RA RAs prepared the training materials (tutorials
about requirements engineering, requirements
evolution, interview guide. These documents
were distributed to all the DEs.

WS1
(day 1)

April,
2011

RA, OBS,
DE

RA present the training material to domain ex-
perts. Domain experts give feedback to enrich
each of discussed items, and to improve the
way they are presented.

WS1
(day 2)

April,
2011

RA, OBS, DE RA gives an introductory talk about ideas of
evolution. Next, RA presents research objects.
During each of presentation, DEs are inter-
viewed to collect feedbacks about the change
management process adopted by ANSPs.

IWS3 May 2011 RA,OBS The RAs analyze feedbacks from WS1 and
prepare for WS2.

WS2 June,
2011

RA, OBS, DE Participants continue the validation work. DEs
elaborate more on the approach to model and
analyze requirements evolution.

IWS4 August,
2011

RA, OBS, RAs analyze the feedbacks collected during
the two workshops.

The table shows the organization of the user study. In this table PM = Preliminary Meeting, IWS = Internal Working Session,
WS = WorkShop.

second day of the first workshop and during the second workshop. In this session, re-
quirements analysts gave presentations about the proposed approach to model and rea-
son on evolution. The domain experts were asked whether the approach would make
sense or useful based on their experience. The domain experts also reported the exist-
ing process to change management adopted by Air Navigation Service Providers.

4.3 Results Analysis

The qualitative data collected in the form of video recording were transcripted to un-
derstand and review the conversations between the ATM experts and the requirement
analysts. The tool used to perform qualitative data analysis is NVivo 9 [7]. Using NVivo,
the transcription is coded (in terms of qualitative analysis) to distinguish between the
various topics of discussion and points of feedback. Different codes and their descrip-
tions are reported in Table 4. The coding was further analyzed to emerge with evidence

8

for the defined success criteria. On the various transcripts, the code percentage coverage
was performed to display the percentage of occurrence of a code in comparison with
other codes. The percentage coverage diagram reported in Figure 3 shows that the con-
versations related to operational procedures and change management procedures have
maximum coverage on the transcription.

Table 4. Description of codes used.

Code Description
AMAN The specific discussion points related to AMAN which covers the

factors considered as constraints for AMAN, the expectations of the
experts from AMAN and the procedures associated with AMAN.

Change Man-
agement

The discussions on the change management procedure which in-
cludes the steps of Brain Storming, Risk Assessment, Simulation,
Human Verification, Type of Change, Evolution, Change Manage-
ment Procedure and Constraints for change management.

Functionality The specific functionality mentioned in accordance to the role of
either the Controller or the Coordinator.

Goals The discussions related to goal refinement and goal sharing concepts
in i*-based requirements modeling language.

Operational
Procedure

The operational procedures followed by Air Traffic Controllers in
the real situation.

Organizational
Role

The composition of organizational roles in ENAV.

Feedback on
Graphical Rep-
resentation

The feedback obtained on the graphical representation of evolution
presented by the requirement engineers.

Behavior The behavior observed apart from the discussion points as silence,
indirect answer and not interested.

4.4 Threats to Validity

We consider threats to construct, internal, external and conclusion validity [17] as rele-
vant for our user study.

– Construct Validity:Threats to construct validity are related to decide to which ex-
tent what was to be measured was actually measured.The main construct validity
threat in this study regards the design of the measurement instrument: are the ques-
tions formulated so that the interviews answer our research questions? Our main
measurement instrument is the interview guide which includes the questions to be
asked. Three requirement analysts have constructed it by analyzing the research
questions and creating sub-questions. The list of questions have been reviewed by
the consultants to check for completeness and consistency; therefore we believe

9

that the interview guide is accurate. Moreover, to reduce this threat we have used a
number of information sources and data collection techniques.

– Internal Validity:Internal validity is an inductive estimate of the degree to which
conclusions about causal relationships can be made (e.g. cause and effect), based
on the measures used, the research setting, and the whole research design. A threat
to internal validity in our case study was related to communication issues with the
ATM experts. First of all there was a communication gap between the requirements
analysts and the ATM domain experts: certain concepts have a different meaning
for them. A second issue was related to language barriers: the ATM expert had to
provide feedbacks not in their mother tongue language. For these reasons, some
useful feedbacks might not have been given to the requirement analysts.

– External Validity:External validity concerns the extent to which the (internally
valid) results of a study can be held to be true for other cases, for example to dif-
ferent people, places or times. Since we have conducted a qualitative user study,
our objective was not to do any generalization of the results to other contexts, but
understand the change management process adopted when a new tool is introduced
in complex and critical systems such as air traffic management systems and to in-
vestigate the applicability of the approach to model and reason on evolution. To
generalized the findings of this user study we are planning to consider other com-
plex systems in different application domains.

– Conclusion Validity:This threat is concerned with the degree to which conclu-
sions reached are justified. Our conclusions are based on the remarks and com-
ments given by the ATM experts. The video recorded discussions between the ATM
experts and requirement analysts have been analyzed to provide evidence in accor-
dance to the real context of the ATM domain. To have an effective discussion with
the ATM experts, the requirement analysts also had a prior meeting with them to
confirm the protocol for the discussion.

5 Analysis of the Results

This section summarizes the feedbacks that were collected during the two workshops
WS1 and WS2 and analysis of the feedbacks by the requirement analysts.

5.1 Feedbacks During the Experiments Execution

On the applicability to the ATM domain of the approach to model and reason on require-
ments evolution the participants P5 and P12 have pointed out that the approach could
be very useful during the initial phase of the change management process adopted by
ANSPs. The approach can help managers, technicians and controllers to understand the
implications and impacts of a proposed change. P5 and P12 suggested that Evolution
Elicitation and Probability Estimation might be useful to identify the alternative oper-
ational requirements associated with a proposed change. The Reasoning phase instead
can be used to support the decision makers in identifying the best solution at operational
level to be implemented.

A challenge in applying the approach to model and reason on requirements evolu-
tion was reported by participants P6 and P9. They argued that due to the complexity of

10

Fig. 3. Codes Coverage

ATM systems, it is very difficult to identify all possible evolutions in advance and to
predict the probability of evolutions. P6 and P9 also remarked that it is possible to iden-
tify certain evolutions only during the change impact analysis phase. Thus, the ATM
experts suggested that an incremental approach should be adopted to identify all possi-
ble evolutions for a given before-evolution requirements model. Moreover, participant
P12 has pointed out that qualitative metrics such as risk severity are already used to
classify a change, and therefore new metrics should be related to those already in use.

On the graphical representation of evolution rules, all participants have agreed that
they prefer the tree-like representation illustrated in Figure 1(a) rather than the swim
lane representation in Figure 1(b).

Moreover, participant P13 has expressed a positive opinion about the applicability
of the graphical representation to capture the evolution in ATM, P6 and P9 instead were
not totally confident about that.

5.2 Observations from Requirement Analysts

Some of the main observations made by the requirement analysts are reported in what
follows.

– Build requirement models with the experts triggers many useful discussions with
and among the experts, and help reveal inconsistencies and mistakes in the models.

– More feedbacks could have been collected if the ATM experts would have applied
the approach to model and reason on requirements evolution.

– There was a communication gap between requirement analysts and domain experts
regarding the terminology used in the study. ATM experts should have been en-
couraged to provide also written feedbacks to reduce the language barriers.

– It would have been better to involve all the different stakeholders - air traffic con-
trollers, managers, software engineers- who participate in the change management
process adopted by ANSPs.

– Having internal working sessions with the domain experts before the workshops is
key for collecting useful feedbacks from the ATM experts.

11

5.3 Evaluation with respect to the Success Criteria

In this section we evaluate the performance of the modeling and reasoning approach to
requirements evolution with respect to the success criteria identified in section 4.1.

SC1 : The phases of the change management process adopted by Air Navigation
Service Providers (ANSP) are identified. For each phase of the process the participants
and the artifacts used to support the phase are identified.

As attested by the graph illustrated in Figure 3, during the WS1 and WS2 work-
shops, the requirement analysts gain a deep-understanding of the change management
process adopted by ANSPs. The process mainly consists of the following phases:

1. Brainstorming. This phase aims at exploring the different options for responding
to a proposed change and evaluating their feasibility. Air traffic controllers, techni-
cal, and managers try to identify the new high level operational requirements and
the different possible alternative operational and technical procedures. The opera-
tional requirements and procedures are represented as influence diagrams [13].

2. Risk Assessment. The objective of this phase is to identify the nature of the pro-
posed change. If there is no impact at operational level the change is minor and can
be directly implemented without performing any simulation or training for the air
traffic controllers. On the contrary, if simulation is needed, the change is a major
change.

3. Fast Time Simulation. The aim of this phase is to assess the impact of change on
the operational procedures by performing computer-based simulation.

4. Real Time Simulation. This phase evaluates the impact of the change with humans
in a real environment. Humans can propose minor changes to be implemented.

SC2 : The approach to model and reason on evolution can support and facilitate
the change management process adopted by Air Navigation Service Providers.
The participants P5 and P12 have pointed out that currently, in the whole ATM do-
main an increasing interest is devoted to methodologies and processes supporting and
documenting the decision making activities within the SESAR Programme. They have
mentioned that main open issues are change management and the need of a formal
methodology to trace and assess the introduction of new operational concepts and their
impact on ATM Key Performance Areas. P5 and P12 have reported that now the differ-
ent phases of the change process adopted by Air Navigation Service Providers are sup-
ported by influence diagrams that allow to trace strategic objectives to operational solu-
tion and that allow to perform what if analysis to understand the impact of a proposed
change. P6 and P9 suggested that the Evolution Elicitation and Probability Estimation
might be useful during the brainstorming phase to identify the alternative operational
requirements associated with a proposed change. The Reasoning phase instead can be
used to support the decision makers in identifying the best solution at operational level
to be implemented.

The comments of P5 and P12, thus, indicate that the approach to model and reason
on evolution can support managers and controllers during each phase of the change
process.

SC3: The approach to model and reason on requirements evolution is sufficiently
expressive to capture the evolution in the ATM domain.

12

The feedbacks provided by the ATM expert P5 and P9 during the second workshop
indicate that the representation of evolution rules can be applied to model evolution in
the ATM domain. The experts pointed out that since ATM systems are complex sys-
tems it might be difficult to predict all possible evolutions and represent them as after
requirement models. Thus, they suggested to adopt an incremental approach to identify
the possible evolutions. Moreover, the experts reported that the probability of evolution
is difficult to determine. They also pointed out that qualitative parameters are associated
with evolution in the ATM domain rather than the probability of evolution.
SC4:The approach to model and reason on requirements evolution can be easily under-
stood by ATM domain experts.
The graphical representations for evolution rules illustrated in Figures 1(a) and Fig-
ure 1(b) were presented to the ATM experts during WS1 the first workshop. The ATM
experts were asked which graphical representation they prefer and they preferred the
tree-like representation. They were also asked if the find intuitive the graphical repre-
sentation and they agreed that the graphical representation could be easily understand
by them. This answer is also supported by the fact that the domain experts suggested
modifications to the requirement models that were the after models of an observable
evolution rule, explained their rationale, or asked relevant questions about some de-
tail in the models. This indicates the graphical representation and the before and after-
evolution requirements models were comprehensible for the domain experts.

6 Lessons Learnt and Conclusions

This paper has presented the results of a qualitative user study about requirements evo-
lution. The objectives of the study were to gain in-depth understanding of the change
management process adopted by Air Navigation Service Providers when a new tool
such as the AMAN is introduced, and to investigate the role that the approach to model
and reason on requirements evolution can play in such process. The study was mainly
built on semi-structured interviews with a high degree of discussion between the re-
quirement analysts and ATM domain experts, and on focus groups meetings. This ap-
proach has allowed the requirement analysts to understand the change management
process adopted by Air Navigation Service Providers.

The user study also has provided useful insights into the weaknesses and advan-
tages of our approach to requirement evolution’s modeling and reasoning. Moreover,
we have learnt important lessons about the aspects to consider during research design.
We summarized the main findings in what follows.

6.1 Results Related to the approach to Requirements Evolution

A lesson learnt from the user study is that the most challenging step of our approach
to requirement evolution is Evolution Elicitation. Regarding the Evolution Elicitation
phase, not all after requirement models for an observable rule can be foreseen in ad-
vance. Estimating the probability of evolution of after requirements models is not a
trivial process. The tree-like representation for evolution rules is easy to understand
but its intuitiveness can be undermined if the before and after evolution requirements

13

models are too complex. The intuitiveness depends on the requirement language used
to represent before and after evolution models.

The Probability Estimation and the Reasoning phase are instead the key phases of
the approach to requirements evolution. The Probability Estimation gives the ability to
“translate” qualitative metrics that are typically used by stakeholders to classify evolu-
tion into quantitative metrics that enable the Reasoning phase. The Reasoning phase has
turned out to be a powerful decision-support tool since it allows to select the optimal
design which is resilient to changes in the requirements model.

6.2 Experiences from Using a Qualitative Research Approach

During the execution of the user study, we have understood that several aspect can in-
fluence the feedback collection from domain experts. The selection of domain experts
strongly influence the relevance of feedbacks collected and the satisfaction of the suc-
cess criteria chosen for the user study. In the user study, the domain experts selected had
a different background and so we were able to collect feedbacks about the approach to
requirement evolution from different perspectives.

Another important aspect to take into account is the potential communication gap
between the research team and the domain experts. Research team and domain experts
might use same terms with different meanings that can lead to misunderstandings and
to provide wrong or unrelated feedbacks. Thus, it is required to establish a common
language between the research team and the domain experts before the user study exe-
cution, or to have a “mediator” who reformulates the questions of the research team for
the domain experts and who reformulates the domain experts’ feedback for the research
team. Moreover, the level of engagement of the domain experts depends by two main
factors: the means to provide feedbacks and the language in which such feedbacks need
to be provided. Different ways to collect feedbacks not only verbal one need to be sup-
ported. The most effective one must be the one in which the domain experts can discuss
in their mother tongue language and then provide written feedback in English.

To collect more insightful feedbacks, hands-on sessions where the domain experts
apply/ use the artefacts under validation should be included in the validation session
execution.

Acknowledgement

We would like also to thank DeepBlue and ATM experts for participating in this study.
We would like to thank Professor John Mylopoulos, and colleagues in the ATHENA
research group at University of Trento (UNITN) for their scientific contribution, and
Dr. Alberto Battocchi (UNITN) for acting as an observer.

References

1. EUROCONTROL ATM Strategy for the Years 2000+ Executive Summary, 2003.
2. A. Bertolino, G. D. Angelis, A. D. Sandro, and A. Sabetta. Is my model right? let me ask the

expert. Journal of Systems and Software, 2011.

14

3. P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J. N. och Dag. An industrial survey
of requirements interdependencies in software product release planning. 2001.

4. P. D. Chatzoglou. Factors affecting completion of the requirements capture stage of projects
with different characteristics. Information & Software Technology, 1997.

5. B. Curtis, H. Krasner, and N. Iscoe. A field study of the software design process for large
systems. 1988.

6. A. Herrmann, A. Wallnöfer, and B. Paech. Specifying changes only — a case study on delta
requirements. REFSQ ’09, pages 45–58, Berlin, Heidelberg. Springer-Verlag.

7. H. Jemmott. Using nvivo for qualitative data analysis. Analysis, 1(February):7–7, 2008.
8. F. J. F. (Jr) and T. W. Mangione. Standardised Survey Interviewing. Springer Publishing

Company, Incorporated, 1990.
9. E. Kamsties, K. Hörnmann, and M. Schlich. Requirements engineering in small and medium

enterprises. In Proc. Conf. on European Industrial Requirements Engineering, 1998.
10. L. Karlsson, A. Dahlstedt, B. Regnell, J. Nattochdag, and A. Persson. Requirements engi-

neering challenges in market-driven software development – An interview study with prac-
titioners. Information and Software Technology, 49(6):588–604, June 2007.

11. M. Lubars, C. Potts, and C. Richter. A review of the state of the practice in requirements
modelling. In Proceedings of IEEE International Symposium on Requirements Engineering,
RE’93, pages 2–14, San Diego, California, 1993. IEEE Computer Society Press.

12. N. A. M. Maiden, C. Ncube, and J. Lockerbie. Inventing requirements: Experiences with an
airport operations system. 2008.

13. H. K. Rober Graham, Nadine Pilon and P. Ravenhill. Performance framework and influence
model in atm. In Digital Avionics Systems Conference(DASC), 2009.

14. L. M. S. Tran. Dealing with known unknowns: A goal-based approach for understanding
complex systems evolution. Technical report, University of Trento, 2011.

15. L. M. S. Tran and F. Massacci. Dealing with known unknowns: Towards a game-theoretic
foundation for software requirement evolution. In CAiSE, pages 62–76, 2011.

16. K. Welsh and P. Sawyer. Requirements tracing to support change in dynamically adaptive
systems. REFSQ ’09, pages 59–73, Berlin, Heidelberg, 2009. Springer-Verlag.

17. C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimenta-
tion in software engineering: an introduction. Kluwer Academic Publishers, Norwell, MA,
USA, 2000.

15

 D.3.3 Algorithms for Incremental Requirements Models
Evaluation and Transformation| version 1.19 | page 121/136

APPENDIX G

Quick fix generation for DSMLs
Ábel Hegedüs∗, Ákos Horváth∗, István Ráth∗, Moisés Castelo Branco† and Dániel Varró∗

∗Budapest University of Technology and Economics
Budapest, Hungary

Email: {hegedusa,ahorvath,rath,varro}@mit.bme.hu
†University of Waterloo

Waterloo, Ontario, Canada
Email: mcbranco@gsd.uwaterloo.ca

Abstract—Domain-specific modeling languages (DSML) proved
to be an important asset in creating powerful design tools for
domain experts. Although these tools are capable of preserving
the syntax-correctness of models even during free-hand editing,
they often lack the ability of maintaining model consistency for
complex language-specific constraints. Hence, there is a need
for a tool-level automatism to assist DSML users in resolv-
ing consistency violation problems. In this paper, we describe
an approach for the automatic generation of quick fixes for
DSMLs, taking a set of domain-specific constraints and model
manipulation policies as input. The computation relies on state-
space exploration techniques to find sequences of operations
that decrease the number of inconsistencies. Our approach is
illustrated using a BPMN case study, and it is evaluated by several
experiments to show its feasibility and performance.

I. INTRODUCTION

In model-driven software engineering, domain-specific
modeling (visual) languages (DSMLs) provide a popular
rapid prototyping and generative technique to increase design
reusability, speed up the development process and improve
overall quality by raising the level of abstraction from software
specific details to the problem domain itself. Today, DSMLs
are deployed in many development toolchains to aid both
software designers and domain experts, in order to integrate
deep domain knowledge at an early design phase.

While many standard DSMLs are readily available (such as
AUTOSAR for automotive software design, or process model-
ing languages such as BPMN [1] for service-oriented systems),
custom modeling environments are developed in-house by
many organizations to tailor development tools and code
generators to their specific needs. This language engineering
process relies on frameworks such as the Eclipse Modeling
Framework (EMF [2]) or MetaEdit+ [3] that provide powerful
tools for defining DSMLs and to automatically generate textual
or graphical editors for creating domain models.

As domain-specific models are abstract and thus highly
compact representations of the system-under-design, a key
issue (that arises in both standardized and custom-made mod-
eling environments) is inconsistency management. Inconsis-
tencies are violations of the well-formedness and correctness
rules of the language that may correspond to design errors, or
violations of the company’s policies and best practices. While
domain-specific editors are usually capable of ensuring that el-
ementary editing operations preserve syntactic correctness (by

e.g. syntax-driven editing), most DSMLs include additional
language-specific consistency rules that must also be checked.

In the current state-of-the-art of modeling tools, inconsis-
tency management of complex rules focuses primarily on
the detection of inconsistency rule violations, facilitated by
dedicated constraint evaluators that take e.g. an OCL [4]
expression and generate code that continuously scans the
models and reports problematic model elements to the user.
However, the resolution of these violations is mostly a manual
task: the user may manually alter the model to eliminate the
violations, but this can be a very challenging problem due to
the complexity of the language or the concrete model. As a
result, manually fixing a violation of one inconsistency rule
may introduce new violations of other rules.

In programming languages, the concept of quick fixes (also
called error correction, code completion) is a very popular fea-
ture of integrated development environments such as Eclipse or
Microsoft Visual Studio, which aids programmers in quickly
repairing problematic source code segments. This feature is
deeply integrated into the programming environment and it
can be invoked any time for a detected violation, giving the
developer a list of fixing actions that can be applied instantly.

In the current paper, we propose to adapt this concept to
domain-specific modeling languages. Our aim is to provide a
domain-independent framework (that is applicable for a wide
range of DSMLs), which can efficiently compute complex
fixing action sequences even when multiple, overlapping in-
consistency rule violations are present in the model. To capture
inconsistency rules of a DSML, we use graph patterns that
define declarative structural constraints. Our technique uses
graph transformation rules to specify elementary fix operations
(policies). These operations are automatically combined by a
structural constraint solving algorithm that relies on heuristics-
driven state-space exploration to find quick fix sequences
efficiently. As a result, our approach provides high-level ex-
tensibility that allows both the language engineer and the end
user to extend the library of supported inconsistency rules and
fixing policies.

The rest of the paper is structured as follows. Section II
introduces the problem of model editing for DSMLs and de-
scribes our BPMN case study used for illustration throughout
the paper. In Section III, we give a more precise definition on
quick fixes for DSMLs, describe the process for generating

them and specify the architecture used for implementation.
In Section IV, we show the application of the approach on the
BPMN case study, while Section V contains our evaluation of
the application. Finally, related work is discussed in Section VI
and Section VII concludes the paper.

II. CASE STUDY: BUSINESS PROCESS MODELING

In this paper, we use the Business Process Model And
Notation (BPMN [1]) as an illustrative case study. BPMN is a
well-known and widely used standard, flowchart-like notation
system for specifying business processes. BPMN supports the
scoped modeling of both control and data flow; for control
flow, activities, events, gateways (conditional decision, fork-
join) may be used while data flow may be facilitated between
activities and artefacts (e.g. data objects). All elements of a
process may be organized into pools and swimlanes to create
a structural breakdown according to e.g. organizational or
functional rules (scopes).

Fig. 1. Example BPMN process

Currently, there is a variety of BPMN-capable tools avail-
able (e.g. The MEGA Suite, Tibco Business Studio, or SAP
NetWeaver BPM) that all use the standardized graphical
notation (depicted in Figure 1), where activities (tasks) are
represented by rectangles, events by circles, gateways by dia-
monds (rhombi) and sequence flow by arrows – inconsistencies
are indicated by red circles). However, in our examples we use
a graph-like abstract syntax representation that indicates the
types and names of each BPMN node more explicitly in order
to ease understanding.

Unfortunately, these tools do not address automated incon-
sistency resolution. For example, while the popular BPMN
editor included in the Eclipse SOA Tools Platform suite [5] is
able to detect a number of simple inconsistency rule violations,
it does not guide the user in any way how to fix them.

Example 1 (Quick fix in a BPMN context) We give an in-
tuitive example to clarify the concept of quick fixes applied
in a domain-specific modeling context. Inconsistency rules
in BPMN may describe process patterns that should not
appear according to the standard (or custom design policies),
e.g. because they would lead to incorrect behavior (when
the process is executed). For instance, as message sending
provides communication between different processes (which
are modeled as pools), messages between elements belonging
to the same pool are discouraged.

When an instance of such an inconsistency is detected
in a BPMN process model (e.g. a given message is to be

sent between two activities that belong to the same pool, as
illustrated by the dashed arrow in Figure 1), the Eclipse editor
places an error feedback marker in the model to indicate the
location of the error. The user can only attempt to correct the
error by a manual process, starting from guidance given by
the (ad-hoc) textual report. One may attempt to remove the
erroneous model configuration by performing a sequence of
elementary operations (such as deleting an element, or altering
its location), and then re-running the validation on the model
to check whether the attempt was successful.

We aim to automate this lengthy and error-prone process
by a quick fix generator. Given the error marker and a set of
elementary fix operations (policies), the generator performs the
try-and-test search (without permanently altering the model)
and presents the possible solutions (if any) to the user. In the
small example above, the generator may find that the violation
can be removed by either deleting the message or moving the
receiver to a separate pool, and present a list of these solutions
to the user, where the (sequence of) correcting operations can
be quickly executed in one compound operation, restoring the
correctness of the model.

Challenges of quick fix generation

While simple fixing actions (such as deleting the ill-
configured message) can be provided (in a hard-wired manner)
by the programmer of the violation detection component (as
available in e.g. the EMF Validation Framework [6]), our fix
generator is a more generic solution as it can effectively deal
with situations where (i) multiple errors are present in the
model, possibly affecting an overlapping set of elements, and
(ii) the fixing of individual errors may interfere with each other
generating intermediate violations.

From the end-user perspective, our approach addresses the
following challenges/requirements:

• quick feedback to the user: all fixing proposals should be
calculated quickly to keep the interactive nature of the
modeling process intact (if no proposal can be calculated,
the user may wish to continue looking for a solution
which takes more time).

• offer the best fixes to the user: the inconsistency reso-
lution might have many solutions. The tool should pick
the best options and present only those to the user, by
discarding too complicated or “dangerous” ones (i.e. high
number of modifications on a large part of the model).

• keep model changes at a minimum: all offered fix propos-
als should use conservative manipulation sequences that
keep most of the model intact, in order to maintain the
user’s feeling of being in control of model manipulation.

• support for local and global scope for fixes: inconsistency
rule violations are usually local in the sense that their
scope is defined in terms of a few interconnected model
elements. While a model may have many erroneous con-
figurations scattered, a fixing proposal generator should
allow the user to select the context to which solutions
will be generated.

• extensibility: the supported library of inconsistency rules
and (elementary) fixing policies should be easily exten-
sible by the end users as well. This is a key feature for
enforcing customized design standards that organizations
or individuals can develop and tailor to their needs.

III. PROBLEM FORMALIZATION

A. Definition of Quick Fixes for DSMLs

First, we define the components of a DSML, which are
foundational concepts in our approach (depicted in Figure 2).

Definition 1 The metamodel MM for a DSML includes the
set of model element types of the domain, their attributes and
relationships between model elements. A model conforming
to the metamodel is called an instance model M.

Definition 2 A query q over a model M represents constraints
that have to be fulfilled by a part of the instance model M0 ⊆
M. Given an instance model M and a query q, a submodel
that fulfills the query is called an injective match m : q 7→M0

(or shortly, q m7→ M0), where M0 is the context of the match
m (denoted as ctx(m)).

Definition 3 Inconsistency rules r describe situations which
should not appear in instance models and they are defined as
queries over an instance model. The set of inconsistency rules
defined for a DSML is denoted by R.

Definition 4 An operation o is a pair of o = (p,~s) with a
set of symbolic parameters p, a sequence of elemental model
manipulation steps ~s, which specify how the model is modified
by adding, removing or changing parts of it similar to syntax-
directed editing. The set of all operations for a DSML is
denoted by O.

Definition 5 The execution of the operation o on Mold

(Mold, b)
o−→ Mnew modifies the model Mold according to

the elemental steps, based on the bindings b from symbolic
parameters to model elements, resulting in model Mnew.

Definition 6 The DSML is a triplet DSML = (MM,R,O)
containing the metamodel, the set of inconsistency rules and
operations defined for the language.

Next, the above definitions are used for specifying the
concepts used in our quick fix generation approach.

Definition 7 An inconsistency rule r is violated by an in-
stance model M if there exists at least one match (violation, v)
r

v7→ M0, where M0 ⊆ M. The set of violations that contain
a given model element e is denoted by Ve(M) = {v|e ∈
ctx(v)}, and finally, the set of all violations in M by V(M).

Definition 8 An instance model M of metamodel MM, is
inconsistent if one or more inconsistency rules are violated by
(a part of) M, formally ∃r ∈ R,∃v ∈ V(M) : r

v7→ M. The
total number of violations in M for all inconsistency rules is
denoted by |V(M)|, while the number of local violations for
a given model element e ∈M is denoted by |Ve(M)|.

Fig. 2. Quick fixing an inconsistent model

Fig. 3. Application of a Quick fix

Quick fixes were defined informally as a sequence of model
manipulation operations, which change an inconsistent model
in a way to eliminate constraint violation instances.

Definition 9 A quick fix MI
F⇒ MC = (Mi, b1)

o1−→
M1, (M1, b2)

o2−→ M2, . . . , (Mn−1, bn)
on−→ MC for a model

element e is an ordered sequence of operations executed on
an inconsistent model MI , resulting in a partially corrected
model MC , with the following conditions:

• ∃vI ∈ V(MI) : e ∈ ctx(vI); There exists a violation vI
in the incosistent model MI , where the model element e
is in the context of vI .

• @vC ∈ V(MC) : e ∈ ctx(vC); There is no violation vC
in the partially corrected model MC , where the model
element e is in the context of vC .

• |V(MI)| > |V(MC)|; F decreases the total number of
violations in the model

Figure 3 illustrates how the application of the operations
in a quick fix affects the instance model by eliminating
the violations step-by-step. Initially, there are several model
elements included in Ve(MI) in the inconsistent model MI .
After applying the first operation o1 from the quick fix, the
resulting M1 where some of the violations may be fixed
already. By executing the rest of the operations o2, o3 in the
quick fix, the final model MC contains no violations for the
selected element e. It is important to note that not all violations
in the model are eliminated by the quick fix, only those that
contained the selected model element e. However, the total
number of violations |V(MI)| decreases.

In order to map our approach to a given specific modeling
environment, the generic definitions (such as query and opera-
tion) are mapped to the well-known formal technique of graph

Fig. 4. Inconsistency rules for BPMN

transformation [7] with available, extensive tool support.

B. Graph transformation as modeling formalism

In this paper, both the metamodel and the instance models
are specified by (typed and attributed) graphs, with special
instance of relations between elements and types.

Queries (e.g. inconsistency rules) are defined using graph
patterns (or graph constraints) [8] including structural, at-
tribute, nested and negated constraints (the last describing
cases where the match of a pattern is not valid) and logic
composition operators. Querying is performed by graph pat-
tern matching [9] that returns matches in the form of graphs.

Graph transformation (GT) [7] provides a declarative lan-
guage for defining the manipulation of graph models by means
of GT rules. At GT rule consists of (i) a left-hand side (LHS),
(ii) a right-hand side (RHS) graph, and (iii) arbitrary number
of negative application conditions (NAC) attached to the LHS.
Model manipulation is carried out by replacing a matching
of the LHS in the model by an image of the RHS. This
is performed in two phases. In the pattern matching phase,
matchings of the LHS are sought in the model and the absence
of the graph structures of NACs is checked and ensured. In
the updating phase, the selected matching parts are modified
based on the difference of LHS and RHS.

The foundation of our approach is similar with [10]–[12]
in using graph transformation based techniques for specifying
inconsistency rules and model generation.

C. Quick fixes for BPMN

The metamodel of the BPMN language is defined in EMF
and is incorporated in the Eclipse BPMN Modeler tool [5].
We used this metamodel for specifying inconsistency rules
and model manipulation operations for the language.1

1) Inconsistency rules: Figure 4 shows three of such rules
as graph pattern using a simple graphical notation. Model
elements are depicted with rectangles and relationships with
arrows, while the name of the element and the its type are
separated by colons.

Conditional Edge Preceded By Gateway: This inconsis-
tency rule (condPrecededByGateway) specifies the situation
where a Gateway G is the source of a conditional sequence
edge (depicted as a continuous arrow with a empty diamond
source end) with the target an arbitrary activity A. If there are
two elements in the model, which can be matched to G and A
(respecting the type restriction), then it is a violation. In the

1The full list of inconsistency rules and operations can be found at http:
//viatra.inf.mit.bme.hu/publications/quickfix.

Fig. 5. Operation definitions for BPMN

case study, such a violation exists on the edge between the
first Proceed? gateway and the Cancel event (see Figure 1).

End Event Source of Edge: This inconsistency rule
(endEventSourceOfEdge) specifies the situation where an End
event (E) is the source of a sequence edge (with the target
an arbitrary activity A). If there are two elements in the
model, which can be matched to E and A (respecting the
type restriction), then it is a violation (e.g. the sequence
edge starting from Cancel in the case study as illustrated in
Figure 1).

Message Between Elements in Same Pool: The inconsis-
tency rule messageBetweenSamePool describes the situation
outlined in Example 1. Activities A and B are both elements
in P (as defined by the arrow with the diamond shaped end).
A violation exists, if three elements matching A, B and P can
be found in the model (e.g. the message edge leading from
Cancel to Persist Contract in the case study, see Figure 1).

2) Operation definitions: Operations for manipulating
BPMN models can be defined specifically for each metamodel
type (e.g. create Parallel Gateway) or generically to decrease
the total number of operations (e.g. create element with type).
Figure 5 shows five operations for various modifications using
graph transformation rules. Negative application conditions are
depicted with red rectangles. When possible (the upper three
in Figure 5), the LHS and RHS are merged and model parts
removed by the operation are annotated with delete, while
parts that are created are annotated with new .

The rules removeSequenceEdge and removeMessageEdge
remove an existing sequence or message edge from between
two activities, respectively, while changeEventType changes
the type of an event element to the given type, depicted as
replacing the instanceOf relation (e.g. the type of an event is
changed from End to Start).

The changeSourceOfSequenceEdge moves the source end
of a sequence edge between activity A and B, so that the new
source will be activity C. It also restricts the application by
stating that C must not have an existing sequence edge from
the same element (NAC). Finally, the removeConditionalStatus
rule removes the conditional status from a sequence edge

http://viatra.inf.mit.bme.hu/publications/quickfix
http://viatra.inf.mit.bme.hu/publications/quickfix

Fig. 6. Application of a fix

between activity A and B.
3) Application of a quick fix: The quick fixes (generated by

the techniques detailed in Section IV) should contain enough
information to allow deterministic application over the model
(to a degree that violations are eliminated in all cases). A
selected quick fix is applied to the model by taking each
operation in order and execute it with the stored input bindings
(illustrated in Figure 6).

The application starts from the inconsistent model MI

(upper left) and first removes the conditional attribute from
the sequence edge between Proceed? and Cancel resulting in
M1 (upper right). Next, the type of event Cancel is changed
to intermediate (since it has incoming edges), thus leading to
M2 (lower left). Finally, the message edge between Cancel
and Persist Contract is removed (since they are in the same
pool). In the resulting model MC (lower right) no violations
remain on Cancel .

IV. GENERATION OF QUICK FIXES

A. Constraint satisfaction problem over models

Quick fixes are generated directly on the DSML by using
a state-space exploration approach capable of solving struc-
tural constraint satisfaction problems over models, also called
CSP(M) [13]. In CSP(M), problems are described by: (i) an
initial model representing the starting point of the problem, (ii)
goals that must be met by a solution model defined as graph
pattern and finally, – as a distinctive feature from traditional
CSP approaches – (3) labeling rules, which explicitly define
permitted operations as graph transformation rules.

In CSP(M) a state is represented by the underlying model
– the starting state is the initial model – and a transition
between states is an application of a labeling (GT) rule.
To explore this state space the CSP(M) solver uses guided
traversal algorithms [14] to find a valid solution model that
satisfies all goals and minimize the visited states (effective
selection challenge). Based on the traversal algorithm (which
supports both backtracking and cycle detection) the output of
the solver can be a single or multiple solution models and the
sequence of labeling rules applied to achieve these models.

In order to generate quick fixes using the CSP(M) approach,
we encoded the negated inconsistency rules as goals, the

Fig. 7. Overview of the Quick fix generation

allowed operations as labeling rules and used the model from
the editor directly as the initial model. This way the CSP(M)
solver tries to find a model that satisfies each inconsistency
rule using the allowed operations. The main advantage of using
the CSP(M) approach is that it allows to define the quick fix
problem directly over the DSML model and it does not need
any mapping or abstraction to other mathematical domain as
used in similar model generation approaches [15], [16].

However, it is important to mention that as the CSP(M)
framework is extendable with custom solver algorithms, we
modified its solver algorithm by restricting (1) the application
of operations and (2) the solution checking to the violations
of the selected model element. This is important in order to
support local fixing scopes. Furthermore, the solver supports
both (i) breadth-first and (ii) depth-first search, and (iii) param-
eterizable limits on solution length and number of alternative
solutions. We defined priorities for the operations, which
are taken into consideration during the iteration, thus higher
priority operations are executed first. By giving higher priority
to more conservative operations, the conservativity challenge
is addressed, since solutions containing these operations are
explored before others.

B. Quick Fix Generation Process

The process of quick fix generation depicted in Figure 7
consists of the following steps:

1) Query violations The quick fix generation starts with se-
lecting an element e in the model to work as a scope for
inconsistency rules. Next, all the violations that include
e are queried from the model for each inconsistency rule,
initializing the set of violations Ve(M).

2) Check operation applicability First, all operations are
checked for executability (i.e. whether they can be
executed at all) and executable operations are collected
in a list Op.

3) Select operation The state space exploration then iterates
through Op and checks the possible input parameter
bindings against elements in the matches for viola-
tions in Ve(M) (e.g. a sequence edge violating endE-
ventSourceOfEdge will be part of the possible inputs of
removeSequenceEdge, see Figure 4 and Figure 5).

4) Apply operation If it finds a matching input, then the
operation is applied to the model with the given input

resulting in a new model state.
5) Is solution found? The new model state may be a correct

model, this is checked by re-executing the query against
the model again to get Ve(M). If Ve(M) is empty, then
the total number of violations and violations on elements
in the original Ve(M) are checked as well.

a) Save solution When a valid quick fix is found,
the trace (with the executed operations and input
bindings) is saved to a solution list. Quick fix
generation terminates once a predefined number of
solutions are found.

b) Continue search If the new model state is not a
correct model or further solutions are required, the
next applicable operation is selected. The state-
space exploration terminates if there is no appli-
cable operation within the limited search space.

6) Suggesting fixes The solutions are then suggested for
inspection to the user who may choose one quick fix
to be applied on the model. If no solutions were found,
this information is displayed instead.

It is important that the set of inconsistency rules and
operations are easily extensible by the end users (extensibility
challenge). In our approach, these definitions are not hard-
coded into the solver and can be modified using the graph
transformation formalism. The CSP(M) framework also sup-
ports dynamic handling of inconsistency rules and operations,
e.g. to generate solutions for different subsets of operations.

C. Implementation architecture

We implemented our quick fix generation approach using
the VIATRA2 model transformation framework [17], which
provides metamodeling capabilities and supports model trans-
formations based on the concepts of graph transformations and
abstract state machines. Its incremental pattern matcher is used
as a powerful query engine [18].

The state space exploration part of the approach is executed
by the constraint satisfaction engine presented in [13], where
operations and inconsistency rules are used in solving a
constraint satisfaction problem over the input model. BPMN
processes can be developed in the Eclipse BPMN modeler
tool [5]. Since both the modeler tool and VIATRA2 are Eclipse
technologies, we could seamlessly integrate the quick fix
generator to be usable directly from the modeling tool, just
like quick fixes work in integrated development environments.

V. EVALUATION

A. BPMN models used for evaluation

We evaluated the approach for scalability on two real BPMN
projects, obtained from an industrial partner from the banking
sector. One project is a corporate customer registering work-
flow, composed of five processes and approximately 250 model
activities in total. The other project is a corporate procurement
workflow, composed of three processes and around 70 model
activities. The projects were selected among others available
from the partner by the following criteria: 1 – they can be

Fig. 8. Processes in the case study

converted to the Eclipse BPMN Modeler editor with minor
changes, since they were originally modeled in another tool;
2 – they allow to explore all the errors described for the case
study by containing the necessary modeling scenarios, such as
multiple pools and message flows; 3 – all eight BPMN models
are classified as typical real-life BPMN processes [19]. The
name and size of the different processes are shown in Figure 8.

B. Evaluation environment and method

The evaluation was carried out by adding inconsistencies to
each process and running the quick fix generation approach
independently. We performed measurements2 multiple times
for each test case including different total and local number
of inconsistencies in the model.

The measurement of a given test case was done as follows:
the inconsistent BPMN model is loaded into VIATRA2, the
inconsistency rules and operations are added to the framework,
the quick fix engine is initialized and time measurement is
started. Next, the quick fix engine looks for three different
solutions and gathers them in a list, once it is done the time
measurement is stopped. Finally, the results are saved and the
framework is disposed to return the environment to the initial
state.

C. Evaluation of results

The table in Figure 9 shows the results of our measurements
using the case study models. For each model we measured
the performance for the given number of total and local
inconsistencies. For each case, we measured the number of
visited states and the time of quick fix generation. Finally,
measurement results are given with the mean values along
with deviations.

We made the following observations based on the results
from the different models:

One local violation (#1− 5, 8, 9): In these cases fixing
is possible in a reasonable time even during editing, since the
quick fix generation takes less than 4 seconds in all cases
except #3, where finding three different solutions takes 15
seconds. Although the deviation of runtime is significant in
some cases (50% for #11), it causes only a few seconds longer
runtime.

2All measurements were carried out on a computer with Intel Centrino Duo
1.66 GHz processor, 3 GB DDR2 memory, Windows 7 Professional 32 bit,
Eclipse 3.6.1, EMF 2.6.1, BPMN 1.2, VIATRA2 3.2 (SVN version)

Fig. 9. Evaluation results (|V(MI)|: total number of violations, |Ve (M)|:
max. no. of violations per element, T : time [ms], DT : standard deviation of
time, S: no. of visited states, DS : standard deviation of visited states)

Locality (#3, 5): The higher number of local violations
for the selected element leads to slower fix generation, while
the total number of violations in the model does not affect
performance. Generating quick fixes for one violation in case
#3, where there are only 3 violations, is 15 times slower
than for case #5, which has 9 violations. This is a direct
consequence of our approach, which applies operations on
elements specified by violations of the selected element.

Multiple local violations (#6, 7, 10, 11): Finding quick
fixes in these cases is possible but takes a considerable amount
of time, especially if more than one solution is generated.
For example, finding three solutions for case #7 takes almost
3 minutes and the exploration of more than 40000 states.
However, we found that even with complex DSMLs such as
BPMN visiting one state only takes between 2ms and 4ms,
independently of the number of states explored before (at least
in the scope of the measurements this held).

First solution (#6, 7): We found that often the quick fix
generation finds a solution early on even for large models and
multiple local violations, but then the majority of runtime is
spent looking for alternative solutions.

To summarize, it is feasible to generate quick fixes for
DSMLs, in most cases without interrupting the editing process.
Our approach finds alternative solutions for local violations
without considerable deviation between executions and the
memory usage remains in the acceptable range (between 30MB
and 200MB in all cases). Although in some cases the fix
generation for multiple violations is costly, the generation
can be interrupted without waiting for multiple solutions, thus
resulting in an almost anytime-like algorithm.

VI. RELATED WORK

The quick fix generation approach presented in our paper
deals with correcting local inconsistencies in models using
predefined model manipulation operations. Similar approaches
are found in the areas of model construction and syntax-
directed editing and inconsistency handling of models. In this
section we place our approach with regards to existing works.

Model construction and syntax-directed editing: Model
construction deals with creating consistent models through
a series of operations. In [16] models are constructed by
providing hints to the designer in the form of valid operations,

which are calculated using logic constraints and reasoning al-
gorithms, to maintain global correctness. Mazanek [20] intro-
duced an auto-completion method for diagram editors based on
hyper-edge grammars, where model construction proposals are
generated for incomplete models (although not inconsistent).
In [10] they extended the approach for generating correctness-
preserving operations for diagram editing, by identifying irrel-
evant or incorrect operations. This approach uses local scopes
for operations (i.e. the user selects the elements where auto-
completion is desired), similarly to our approach. In [15]
models are transformed to Alloy specifications and automatic
completion suggestions are calculated on the derived model.

These approaches present construction methods, where
models are built in a monotonously increasing way, while our
approach can also remove parts of the model when incon-
sistency handling requires it. Furthermore, these approaches
translate models into some analysis formalism for generating
operations, while our method works directly on the original
models. Finally, the extensibility (adding and removing con-
straints and operations) of these approaches is limited by using
derived analysis models, while our approach supports dynamic
handling of inconsistency rules and operations.

Inconsistency handling: Fixing common inconsistencies
in design models (such as UML) are regarded as an important
challenge and several techniques were proposed for addressing
it. Egyed et al. [21] presents an inconsistency resolution
method for UML models, where possible consistent models
are generated based on predefined inconsistency rules. The
approach is restricted to operations, which change only one
element at a time, while our quick fix generation approach
allows the definition of complex operations.

[22] proposes an approach for generating repair plans
is presented for EMF-based UML models. It uses generator
functions as operations and extends inconsistency rules with
information about the causes of inconsistencies, to make their
search algorithms more efficient. It supports the restriction of
the maximum size of the explored state-space and fitting re-
pairs to most recent inconsistencies similarly to our approach.

The inconsistency resolution problem is solved using auto-
mated planning in [23] without manually defining operations.
Instead, it generates valid models by translating design models
to logic literals and executing analysis on this derived model.
While planning is similar to heuristic-driven exploration, our
approach does not use derived models.

Nentwich et al. [24] define a distributed approach, where
operation definitions (resolving one inconsistency at a time)
are generated automatically from inconsistency rules described
in a logical language and incremental consistency checking
is performed directly on the design models. However, the ap-
proach handles inputs as XML documents, while our technique
works directly over models.

Graph transformation is also frequently used for handling
inconsistencies. In [25] inconsistency checking and opera-
tions are performed on the model in response to user inter-
face events with actions defined with triple-graph grammar.
In [11] models are checked and corrected based on modeling

guidelines defined using graph transformation rules to help
users in resolving a large number of violations automatically.
Mens [12] proposes critical pair analysis of inconsistency rules
and operations defined as graph transformation rules for im-
proving inconsistency management by detecting incompatible
resolutions and ordering solutions.

All of these approaches are similar to our quick fix gen-
eration method in using graph transformation as a formalism
for capturing inconsistency rules and operations. However, our
approach uses heuristic-driven state-space exploration and is
able to generate quick fixes with local scopes independently
of the total number of violations in other parts of the model.

VII. CONCLUSION

In the paper, we elaborated a novel approach for generating
quick fixes (as instantly applicable, complex corrections to
consistency violations) for DSMLs. Our technique is based
on a heuristics-driven state exploration algorithm for solving
structural constraints directly over domain-specific models. We
have assessed and justified the scalability of our implementa-
tion using real-life models provided by an industrial partner.

Our implementation (accessible as an open source add-on
to VIATRA2) fulfills the challenges established in Section II as
follows: (i) as quick fixes are generated in an anytime fashion,
the first solution is usually quickly found and presented to the
user; (ii) the heuristics-guided algorithm automatically selects
the best, conservative solutions, with additional fine-tuning
possible as future work; (iii) as demonstrated in the evaluation,
the engine is capable of generating solutions for a given local
scope as well as the entire model; (iv) our high abstraction
level, declarative formalism allows both the language engineer
and the end user to build extensible inconsistency rules and
operations at runtime.

Regarding future research, we plan to investigate various
heuristics (such as dependencies between rules) as well as
different solver algorithms, to extend the scalability even
further. A very promising idea is to add the ability to learn
user-selected quick fixes to a runtime knowledge base, and
reuse such knowledge for consequent solution generation.
This could be investigated in a model versioning and conflict
management case study. Technologically, we aim to develop
our current tool further to support the generation of quick
fixes over generic EMF models, to enable the integration of
this technology to all existing Eclipse-based modeling tools.

ACKNOWLEDGMENT

This work was partially supported by the SECURECHANGE
(ICT-FET-231101) and CERTIMOT (ERC HU 09-1-2010-
0003) projects and the Janos Bolyai Scholarship. We would
like to thank the Bank of the Northeast of Brazil (Banco do
Nordeste – BNB) for providing the case study.

REFERENCES

[1] Object Management Group, “Business Process Model and Notation
(BPMN) Version 1.2,” http://www.omg.org/spec/BPMN/1.2/.

[2] The Eclipse Project, “Eclipse Modeling Framework Project,” http://
www.eclipse.org/emf.

[3] J.-P. Tolvanen and M. Rossi, “MetaEdit+: defining and using domain-
specific modeling languages and code generators,” in Companion of the
18th annual ACM SIGPLAN conference on Object-oriented program-
ming, systems, languages, and applications, ser. OOPSLA ’03. New
York, NY, USA: ACM, 2003, pp. 92–93.

[4] Object Management Group, “Object Constraint Language (OCL),” http:
//www.omg.org/spec/OCL/.

[5] SOA Tools Platform, “Eclipse BPMN Modeler,” http://www.eclipse.org/
bpmn/.

[6] The Eclipse Project, “EMF Validation Framework,” http://www.eclipse.
org/modeling/emf/?project=validation.

[7] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, Eds., Handbook
on Graph Grammars and Computing by Graph Transformation. World
Scientific, 1999, vol. 2: Applications, Languages and Tools.

[8] F. Orejas, H. Ehrig, and U. Prange, “A logic of graph constraints,” in
Fundamental Approaches to Software Engineering (FASE), 2008, pp.
179–198, LNCS 4961, Springer.

[9] G. Bergmann, A. Ökrös, I. Ráth, D. Varró, and G. Varró, “Incremental
pattern matching in the viatra model transformation system,” in Pro-
ceedings of the Third International Workshop on Graph and model
transformations. ACM, 2008, pp. 25–32.

[10] S. Mazanek and M. Minas, “Generating correctness-preserving editing
operations for diagram editors,” in Proc. of the 8th Int. Workshop
on Graph Transformation and Visual Modeling Techniques. ECEASST,
vol. 18, 2009.

[11] C. Amelunxen, E. Legros, A. Schürr, and I. Stürmer, “Checking and
enforcement of modeling guidelines with graph transformations,” in
Applications of Graph Transformations with Industrial Relevance, 2008,
pp. 313–328, LNCS 5088, Springer.

[12] T. Mens, R. Van Der Straeten, and M. D’Hondt, “Detecting and resolving
model inconsistencies using transformation dependency analysis,” in
Proc. of Model Driven Engineering Languages and Systems, 2006, pp.
200–214, LNCS 4199, Springer.

[13] Á. Horváth and D. Varró, “Dynamic constraint satisfaction problems
over models,” Software and Systems Modeling, 11/2010 2010.

[14] Á. Hegedüs and D. Varró, “Guided state space exploration using
back-annotation of occurrence vectors,” in Proceedings of the Fourth
International Workshop on Petri Nets and Graph Transformation, 2010.

[15] S. Sen, B. Baudry, and H. Vangheluwe, “Towards domain-specific model
editors with automatic model completion,” Simulation, pp. 109–126,
2010, 86(2).

[16] M. Janota, V. Kuzina, and A. Wasowski, “Model construction with
external constraints: An interactive journey from semantics to syntax,”
in Proceedings of the 11th Int. Conf. on Model Driven Engineering
Languages and Systems, 2008, pp. 431–445, LNCS 5301, Springer.

[17] A. Balogh and D. Varró, “Advanced model transformation language
constructs in the VIATRA2 framework,” in ACM Symp. on Applied Com-
puting (SAC 2006). Dijon, France: ACM Press, 2006, p. 1280–1287.

[18] G. Bergmann, Á. Horváth, I. Ráth, and D. Varró, “Experimental assess-
ment of combining pattern matching strategies with VIATRA2,” Journal
of Software Tools in Technology Transfer, 2009.

[19] P. Gilbert, “The next decade of BPM,” 2010, keynote at the 8th
International Conference on Business Process Management.

[20] S. Mazanek, S. Maier, and M. Minas, “Auto-completion for diagram
editors based on graph grammars,” in Visual Languages and Human-
Centric Computing, 2008. VL/HCC 2008. IEEE, 2008.

[21] A. Egyed, E. Letier, and A. Finkelstein, “Generating and evaluating
choices for fixing inconsistencies in uml design models,” in Automated
Software Engineering, 2008. ASE 2008. 23rd IEEE/ACM International
Conference on, 2008, pp. 99 –108.

[22] M. Almeida da Silva, A. Mougenot, X. Blanc, and R. Bendraou, “To-
wards automated inconsistency handling in design models,” in Advanced
Information Systems Engineering, B. Pernici, Ed., 2010, pp. 348–362,
LNCS 6051, Springer.

[23] J. Pinna Puissant, T. Mens, and R. Van Der Straeten, “Resolving Model
Inconsistencies with Automated Planning,” in Proceedings of the 3rd
Workshop on Living with Inconsistencies in Software Development.
CEUR Workshop Proceedings, 2010, pp. 8–14.

[24] C. Nentwich, W. Emmerich, and A. Finkelstein, “Consistency manage-
ment with repair actions,” in Software Engineering, 2003. Proceedings.
25th International Conference on, 2003, pp. 455 – 464.

[25] E. Guerra and J. de Lara, “Event-driven grammars: Towards the
integration of meta-modelling and graph transformation,” in Graph
Transformations, 2004, pp. 215–218, LNCS 3256, Springer.

http://www.omg.org/spec/BPMN/1.2/
http://www.eclipse.org/emf
http://www.eclipse.org/emf
http://www.omg.org/spec/OCL/
http://www.omg.org/spec/OCL/
http://www.eclipse.org/bpmn/
http://www.eclipse.org/bpmn/
http://www.eclipse.org/modeling/emf/?project=validation
http://www.eclipse.org/modeling/emf/?project=validation

	Gain Control over Evolution by Orchestrating Requirement Engineering and Risk Assessment Processes

